Спиральная химия

Дополнительные вопросы параграфа[править | править код]

Открытие Галилео Галилея при исследовании Млечного Путиправить | править код

Объясните, что обнаружил Галилео Галилей при исследовании Млечного Пути с помощью телескопа.

В 1610 году Галилео Галилей при исследовании Млечного Пути с помощью телескопа обнаружил, что Млечный Путь состоит из огромного числа слабых звёзд.

Учёные-физики, разработавшие теорию электромагнитного поляправить | править код

Назовите имена учёных-физиков, разработавших теорию электромагнитного поля и обосновавших существование электромагнитных волн.

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей, именно он является основоположником учения об электромагнитном поле . Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Научно-фантастические кинофильмы и телепередачи о Вселеннойправить | править код

Перечислите наиболее понравившиеся вам научно-фантастические кинофильмы и научно-популярные телепередачи на тему устройства Вселенной и её изучения.

Научно-фантастические кинофильмы на тему устройства Вселенной:

  1. «Космос: Пространство и время»
  2. «Как работает Вселенная»
  3. «Ткань космоса»
  4. «Космическая одиссея «Хаббла»»
  5. «Вселенная до Большого Взрыва»
  6. «Вселенная»

Научно-популярные телепередачи на ту же тему:

  1. Сквозь пространство и время с Морганом Фрименом
  2. BBC: Планеты
  3. Во Вселенную со Стивеном Хокингом

Производство

Для производства труб общего назначения используется, как правило, углеродистая сталь марок ст3, ст10-20, ст17г1с-у. Основные этапы производства следующие:

  1. Рулон стального листа (штрипс) разматывают и режут на продольные полосы.
  2. Полосы сваривают в бесконечную ленту — это необходимо для обеспечения непрерывности производства.
  3. В вальцах лента сворачивается в спираль и принимает форму круглой трубы.
  4. Шов проваривают под флюсом (электродуговая сварка). Сварной шов может быть наружным, внутренним или двусторонним.
  5. Калибруют в вальцах.
  6. Сварной шов проходит неразрушающий контроль ультразвуком.
  7. Режут на отрезки необходимой длины и складируют.

Техпроцесс включает обязательную объемную термообработку, в ходе которой микроструктура металла становится однородной на всех участках трубы: в основном металле, в сварном шве и околошовной зоне. В результате улучшаются прочностные и вязкопластические свойства металла, и спиральная труба по своим техническим характеристикам приближается к бесшовной. Объемная термообработка позволяет получать трубы с прочностью Х42-Х80 (стандарт API 5L).

Готовая спиральношовная труба проходит механические испытания (на растяжение, сплющивание, изгиб, ударную вязкость и др.), гидравлические испытания под давлением, а также ультразвуковой и рентгенотелевизионный контроль сварных швов, фаски и концов труб.

Для защиты от коррозии используются различные виды наружных и внутренних покрытий:

  • окраска;
  • обработка антикоррозионным маслом;
  • оцинковывание;
  • битумное покрытие;
  • мазутное покрытие;
  • полиэтиленовое покрытие (2- и 3-слойное);
  • полипропиленовое покрытие (2- и 3-слойное);
  • полиуретановое покрытие;
  • эпоксидное покрытие.

Какой формы бывают галактики?

Возможно вы удивитесь, но подробное изучение галактик началось лишь в 1920-х годах прошлого века. В то время как звезды и планеты никогда не были лишены внимания человека, начало внегалактической астрономии положил выдающийся ученый Эдвин Хаббл. Он доказал, что многие туманности, за которыми вели наблюдения астрономы, оказались другими галактикам, состоящими из бесчисленного количества звезд. Хаббл изучил более тысячи галактик и определил расстояния до некоторых из них. Более того, именно Эдвин Хаббл впервые выделил три основных типа галактик: спиральные, эллиптические и неправильные. Оказалось, что спиральные галактики на просторах Вселенной встречаются чаще других. Да что там, более половины галактик – спиральные, в том числе Млечный Путь, галактика Андромеды и галактика Треугольника. Но почему?

Образование в галактике звезд I и II поколения

Галактика Млечный путь (впрочем и другие спиральные галактики) образовалась из медленно вращавшегося газового облака, по своим размерам превосходившего ее в десятки раз.

Первоначально это газовое облако состояло из смеси 75% водорода и 25% гелия и почти не содержало тяжелых элементов. В течение примерно миллиарда лет это облако свободно сжималось под действием сил гравитации. Этот коллапс неизбежно привел к фрагментации и началу процесса звездообразования.

Сначала газа было много, и он находился на больших расстояниях от плоскости вращения. Возникли звезды первого поколения,  в том числе и весьма массивные, а также шаровые скопления. Их современное пространственное распределение  соответствует первоначальному распределению газа, близкому к сферическому.

Наиболее массивные звезды первого поколения быстро проэволюционировали и обогатили межзвездную среду тяжелыми элементами, главным образом за счет вспышек сверхновых. Та часть газа, которая не превратилась в звезды, продолжала свой процесс сжатия к центру Галактики. Из-за сохранения момента количества движения, ее вращение становилось быстрее, образовался диск, и, в нем снова начался процесс звездообразования.

Это второе поколение звезд оказалось богатым тяжелыми элементами. Оставшийся газ сжался в более тонкий слой, так возникла плоская составляющая – основная арена современного звездообразования. Разумеется, выделения двух или трех поколений звезд весьма условно: скорее всего, звездообразование было единым непрерывным процессом, хотя в нем и возможны были отдельные этапы замедления.

Тем не менее, общее правило верно: к галактическому диску относятся звезды ранних спектральных классов О и В, т.е. молодые звезды. Гало, наоборот, составляют объекты, возникшие на ранних стадиях эволюции Галактики, старые звезды. Их возраст составляет порядка 10 –  12 миллиардов лет.

Почему с Земли не видно ярко сияющий центр нашей галактики?

Почти все молекулярное вещество межзвездной среды (облака пыли и газа) находится на расстоянии до 3-7 килопарсек от центра, поэтому  и видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи (к счастью мы можем наблюдать эти области в инфракрасном диапазоне).

Эволюция спиральных галактик: от Большого взрыва до наших дней

Зачем все это надо

Во-первых, это красиво. Наличие в «резюме» любой страны собственной или построенной совместными усилиями лунной станции априори добавит значимости на мировой арене. В наши дни над освоением Луны с переменным успехом трудятся США, Россия, европейские страны, а так же Китай и Индия.

У всех есть собственные проекты, однако сроки реализации неблизкие. Европейское космическое агентство планирует не раньше 2030 года построить на Луне собственные базы, а китайцы и вовсе отодвинули реализацию проекта к 2040-2060 годам. Практически все программы упираются в чрезмерные затраты, связанные с реализацией.

Во-вторых, на Луне есть чем поживиться: разнообразные полезные ископаемые, в том числе алюминий, железо и титан, так же на спутнике в районе полюсов обнаружена вода в виде льда. Но больший интерес представляет довольно редкий на Земле изотоп гелий-3, который отлично подойдет в качестве топлива для термоядерных реакторов.

Этот элемент находится в поверхностном слое лунного грунта — реголите. Российские ученые подсчитали, что для обеспечения энергией всего населения Земли потребуется порядка 30 тонн гелия-3, а на поверхности Луны его по приблизительным подсчетам не менее 500 тысяч тонн. Среди достоинств гелия-3 отсутствует проблема утилизации радиоактивных отходов, как при делении тяжелых ядер на Земле, но и запуск термоядерной реакции с ним в разы сложнее. Словом, не так все однозначно.

Что такое галактика?

В космосе всем заведует сила гравитации. Если бы не она, то на просторах бесконечно расширяющейся – да еще и с ускорением – Вселенной не было бы ни одной галактики. После Большого взрыва, который произошел 13,8 миллиардов лет назад, Вселенная продолжала расширяться, постепенно охлаждаясь. После окончания темных веков – начиная с конденсации нейтрального газа – постепенно начали образовываться сгустки материи.

По сути, галактика – это крупные гравитационно-связанные системы из скоплений материи, звезд, облаков газа и пыли, темной материи и планет. При этом все объекты в составе галактики движутся относительно общего центра масс – сверхмассивной черной дыры, расположенной в самом сердце галактик. Странно, не так ли? Поэтому ученые всматриваются в глубины космоса, пытаясь узнать как можно больше об этом загадочном месте.

Спиральные галактики (S)

Галактика типа S (M 33)

Самый популярный вид галактик. Больше половины из всех существующих галактик — спиральные. Наша галактика Млечный Путь также является спиральной.

Из-за своих «ветвей» они являются самыми красивыми и интересными для наблюдения. Большая часть звёзд расположена в непосредственной близости от центра. Дальше, вследствие вращения, звёзды рассеиваются, образуя спиральные ответвления.

Спиральные галактики разделяются на 4 (иногда 5) подтипа (S0, Sa, Sb и Sc). В S0 спиральные ветви вовсе не выражены, имеют светлое ядро. Они очень похоже на эллиптические галактики. Их ещё часто выносят в отдельный тип — линзовидный. Таких галактик не больше 10% от общего числа. Дальше идут Sa (часто просто пишут S), Sb, Sc (иногда ещё добавляют Sd) в зависимости от степени закрученности ветвей. Чем старше дополнительная буква, тем меньше степень закрученности и «ветви» галактики окружают ядро всё реже.

«Ветви» или «рукава» спиральных галактик имеют много молодых . Здесь идут процессы активного звёздообразования.

Классификация галактик Эдвина Хаббла

Классификация галактик разработанная астрономом Эдвином Хабблом в ХХ годах прошлого века.

Первым шагом к пониманию многих различных явлений часто может быть их классификация. С этой целью выдающийся астроном Эдвин Хаббл в 1920-х годах изучил большую выборку изображений галактик и классифицировал их в соответствии с их особенностями. В своей работе Хаббл предложил классифицировать галактики на три основных типа: эллиптические, спиральные и неправильные. Сегодня для классификации различных галактик астрономы используют разработанную Хабблом последовательность, которая помогает им точно изучать отдельно взятые галактики.

Одни проблемы

Одна из основных проблем долгосрочного пребывания на Луне — солнечная радиация. На нашей планете нас оберегает атмосфера, задерживающая большую часть излучения, а так же магнитное поле, отталкивающее его. У Луны же практически нет ни того, ни другого, следовательно получить опасную долю облучения даже будучи в защищенном скафандре — дело нескольких часов. Правда, эту проблему можно решить.

Поток протонов во время солнечных вспышек двигается медленно и обладает довольно низкой проникающей способностью, так что в случае опасности у астронавтов есть время на то, что бы спрятаться в укрытие. Собственно, практически все проекты лунных колоний — подземные именно по этой причине.

Но это еще не все сложности. Лунная пыль — это вам не то, что копится у вас на книжной полке. В силу отсутствия гравитации и эррозии почвы, она состоит из крайне острых частиц и обладает электростатическим зарядом. Соответственно, эти самые частицы запросто «прилипают» ко всем механизмам и в разы сокращают срок их службы.

Плюс в освоении Луны есть чисто экономические сложности. Да, отправить туда экспедицию стоит огромных вложений, а построить там колонию — еще больше. Но надо понимать, какая от этого может быть выгода. А она не очевидна. Гелий-3 нам пока не настолько нужен, насколько сложно из него добыть энергию. Космический туризм в теории может принести  прибыль, но подобный опыт с коммерческими полетами на МКС показал, что доходы от подобных полетов не окупили даже части затрат, связанных с содержанием станции. Так что и тут не все так просто.

Слабо сжатые системы

Теперь рассмотрим, как ведет себя эллипсоидная галактика. Звездная система такого типа отличается совершенно иным развитием данного процесса. Здесь главная плоскость вовсе не является ярко выраженной областью с малым уровнем потенциальной энергии. Сильное снижение этого параметра происходит только в центральном направлении звездного скопления. А это значит, что межзвездные пыль и газ будут притягиваться в центр галактики. Как следствие, плотность диффузной материи здесь будет очень высока, гораздо больше, чем при плоском рассеивании в спиральной системе. Собравшиеся в центре скопления частицы пыли и газа под действием силы притяжения начнут сжиматься, тем самым сформируется малая по размерам зона плотного вещества. Ученые предполагают, что из данной материи в дальнейшем начинают формироваться новые звезды. Важным здесь является иное – малое по своим размерам облако газа и пыли, находящееся в ядре слабо сжатой галактики, не позволяет себя обнаружить в процессе наблюдения.

Эволюция дисковых галактик — Ольга СильченкоЭволюция дисковых галактик — Ольга СильченкоЭволюция дисковых галактик — Ольга СильченкоЭволюция дисковых галактик — Ольга Сильченко

Hubblecast 62. Спиральная галактика с секретомHubblecast 62. Спиральная галактика с секретом

The Fate of the Milky Way, Andromeda, and Triangulum Galaxies (Annotated)The Fate of the Milky Way, Andromeda, and Triangulum Galaxies (Annotated)

2 Сверла с цилиндрическим хвостовиком

Сверло спиральное с цилиндрическим хвостовиком выпускается короткой, средней и длинной серий по соответствующим стандартам. Такое разнообразие обеспечивает оптимальный подбор нужного инструмента для выполнения каждой конкретной задачи.

Для всех сверл центровые отверстия выполняются согласно ГОСТ 14034. Допустимо выпускать инструмент без центровочных отверстий. Изделия средней и длинной серии согласно своим стандартам могут изготавливаться с шейкой или без нее. Ее размеры не регламентируются.

ГОСТ 4010-77 распространяется на левые и правые сверла короткой серии диаметром 0,5–40 мм. Согласно этому стандарту, в зависимости от диаметра выпускаемого сверла длина составляет (мм):

  • общая всего инструмента – 20–200;
  • рабочей части – 3–100.

ГОСТ 10902-77 распространяется на левые и правые сверла средней серии диаметром 0,25–20 мм. Длина составляет (мм):

  • общая всего инструмента – 19–205;
  • рабочей части – 3–140.

ГОСТ 886-77 распространяется на сверла длинной серии диаметром 1–31,5 мм. Длина составляет (мм):

  • общая всего инструмента – 56–316;
  • рабочей части – 33–207.

У данных изделий направление спирали – правое. С левым изготовляются по согласованию с заказчиком.

Для всего этого инструмента технические требования к изготовлению регламентируются ГОСТ 2034-80. Согласно этого документа данные сверла производятся из быстрорежущей стали и предназначены для просверливания отверстий в ковких и серых чугунах, легированных и углеродистых конструкционных и инструментальных сталях, конструкционных сталях высокой и повышенной обрабатываемости. Этот инструмент изготовляется 3 классов точности:

  • повышенной точности – А1;
  • нормальной – В1;
  • нормальной – В.

Помимо инструмента из быстрорежущей стали допускается по заказу потребителя изготовление сверл также из легированной стали 9ХС. Инструмент может производиться не только цельным, но и сварным. Хвостовики сварных изделий должны быть выполнены из стали 45 или 40Х. Не допускаются в зоне сварки: непровар, поверхностные раковины и кольцевые трещины.

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
Процент от общего числа галактик 20% 55% 5%

Спиральные бывают с перемычкой и без. В первом типе центр пересекается плотным баром звезд. А у вторых подобного формирования не наблюдается.

В эллиптических галактиках проживают самые древние звезды и нет достаточного количества пыли и газа, чтобы создать молодые. Могут напоминать по форме круг, овал или же спиральный тип, но без рукавов.

Примерно четверть галактик представляют группу неправильных. Они меньше, чем спиральные и отображают порой причудливые формы. Их можно объяснить появлением новых звезд или же гравитационным контактом с соседней галактикой. Среди неправильных числятся Магеллановы Облака.

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь — не единственное вселенское образование.

Эдвин Хаббл

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Сравнение размеров

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям — волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями — рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Структура Вселенной

Темная материя — она же пустота, сверхскопления, скопления галактик и туманности — это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

Телескоп Хаббл

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

Состав Вселенной

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Теория большого взрыва

Самые крупные образования во Вселенной — галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление — Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

Разновидности

Можно привести множество разновидностей и моделей спиральных компрессоров. Они отличаются конструкционными особенностями, типом рабочего элемента, уровнем герметизации, базовым назначением и другими характеристиками. Различают одно и двухступенчатые устройства, есть агрегаты горизонтального и вертикального размещения.

Компрессоры могут иметь классическую спираль Архимеда, эвольвентный элемент, кусочно-окружной и другие конфигурации рабочего органа. Есть полностью герметичные устройства, безсальниковые и негерметичные сальниковые. Различают агрегаты сухого сжатия и маслозаполненные. Устройства отличаются требованиями к приводу или мощностью, максимальным давлением на выходе, производительностью и рекомендациями к охлаждению.

Структура

Спиральные галактики состоят из следующих компонент:

  • Галактический диск
  • Балдж
  • Галактическое гало
  • Чёрная дыра в центре галактики

Схема спиральной галактики, вид в профиль

Среди всех типов галактик (за исключением неправильных, не имеющих какой-либо структуры), в среднем, в спиральных галактиках наиболее выражена дисковая составляющая, и меньше всех — балдж. В дисках спиральных галактиках наблюдаются галактические рукава, а сам диск обычно окружён галактическим гало. В гало содержится небольшая часть массы галактики, преимущественно старые звёзды поколения II и шаровые скопления. Таким же по содержанию является балдж, а диск, напротив, богат молодыми звёздами поколения I, рассеяными звёздными скоплениями и межзвёздным газом и пылью, а также туманностями.

Бар

В некоторых спиральных галактиках присутствует перемычка в центре, назваемая баром и проходящая между спиральными рукавами. Она есть и у Млечного Пути, как показали наблюдения 2005 года на Космическом телескопе имени Спитцера, и на данный момент ей обладает 2/3 всех спиральных галактик. Однако, со временем это число меняется: 8 миллиардов лет назад он был только у 11% спиральных галактик, и к моменту 2,5 миллиардов лет назад это число удвоилось.

Спиральная структура

Галактические рукава, наблюдаемые только в дисках спиральных галактик, выделяются большей светимостью и голубым цветом на фоне диска и имеют форму логарифмической спирали. Во всех спиральных галактиках наблюдаются рукава, однако только в 10% спиральных галактик наблюдается упорядоченная структура. В 60% галактик спиральная структура менее регулярна, но, в целом, хорошо прослеживается, а оставшиеся 30% относятся к флоккулентным галактикам: их спиральный узор состоит из отдельных кусочков и не образует непрерывных спиралей.

Между рукавами также есть звёзды и межзвёздное вещество, но рукава галактик выделяются из-за того, что являются наиболее активными областями звездообразования в галактике. Именно в них образуются звёзды, однако, самые яркие и горячие из них живут недолго и не успевают переместиться в другие области диска. Поэтому они наблюдаются только в рукавах галактики, что и обеспечивает им высокую яркость и голубоватый цвет. Однако, в инфракрасном диапазоне спиральная структура также наблюдается, следовательно, рукава являются также областями повышенной плотности звёзд.

Долгое время был неизвестен ответ на вопрос, являются ли спирали «закручивающимися» или «раскручивающимися»: то есть, происходит ли вращение галактики внешним концом рукава, соответственно, назад или вперёд: в галактиках, наблюдаемых с ребра, невозможно разглядеть спиральную структуру, а у галактик, наблюдаемых плашмя, трудно измерить скорость вращения. На данный момент считается, что в большинстве галактик спирали закручиваются, однако, в некотрых взаимодействующих галактиках встречалось обратное.

Происхождение спиральных рукавов также долгое время было загадкой: в простейшем представлении, в котором спиральные ветви содержат постоянно одно и то же вещество, за несколько оборотов галактики они бы растягивались и распадались. Поэтому на данный момент господствуют две гипотезы: либо спиральные рукава живут недолго и постоянно исчезают и возникают, либо же они движутся вокруг центра галактики со своей скоростью, отличной от скорости вращения галактики — таким образом, звездообразование постоянно происходит в разных областях.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий