Что такое alpha centauri, расстояние и время полета от земли

Методы и способы определения расстояния до звезд

Всегда и во всём человек ищет свойства, характеристики и отличительные черты. На сегодняшний день, мы способны рассчитать любой отрезок, применяя практические и теоретические приёмы.А вот как определяют расстояние до звезд? Для этого чаще всего используют метод параллакса.Параллакс — это изменение видимого положения объекта в отношении удалённого фона, которое напрямую зависит от положения наблюдателя.В случае определения расстояния до звезд, наблюдение проводят с двух сторон от Солнца на протяжении 6 месяцев друг от друга. В результате полученное смещение светила даёт возможность оценивать дистанцию до него.Что интересно, если бы звёздное тело было бы удалено от нашей планеты на 3,26 световых года или на 1 парсек, то его параллакс составлял бы 1 секунду дуги. Но, наверное, к счастью, нет ни одного настолько близко расположенного звёздного тела к нам.

расстояние до звезды

Звезда ван Маанена

Звезда ван Маанена

«Одиссей» выходит на орбиту Звезды ван Маанена, ближайшего белого карлика в 14,1 световых годах от Солнца. Удручающее зрелище. Мы видим своего рода «труп» — остатки проэволюционировавшего светила. Размеры белых карликов не превышают одной сотой Солнечной, а масса сопоставима с ним. Белый карлик — это тусклое ядро погибшей звезды, которое светит лишь за счет остывания своего плазменного вещества. Между белыми карликами и нашим Солнцем есть один из самых крупных по численности составляющих звезд класс — красные карлики. Команда компьютеру, и мы в мгновение оказываемся на орбите Проксимы Центавра.

Проксима Центавра

Небольшой красной звезде, понуро светящейся в безграничном космосе. Размеры и масса таких звезд не превышает лишь трети, а светимость в тысячи раз меньше Солнечной.

Сравнительные размеры

По мнению многих астрономов красные карлики составляют самый многочисленный класс «настоящих» звезд во Вселенной. Дело в том, что все вышеперечисленные звезды, на самом деле по-настоящему ими не являются. Только в красных карликах проходят классические протонные термоядерные реакции, позволяющие им существовать сотни миллиардов лет.

Эта невзрачная звезда, очень вероятно, намного переживет Солнце, и если человечество захочет найти в космосе звезду, что сможет нас приютить после гибели родной звезды, то далеко ходить не придется. По меркам космоса, конечно.

Самая близкая звезда и самая близкая звездная система

В тройную звездную систему входит и самая близкая к Солнцу звезда — Проксима Центавра.

Слово “Проксима” в имени звезды по латыни означает “Ближайшая”. И это действительно так. В настоящее время, звезду и Солнце разделяет расстояние только 4.22 световых года, что делает ее ближайшей к нам звездой. Тем не менее, несмотря на близость, увидеть ее невооруженным глазом с Земли невозможно.

Так, ближайшая к нам звезда, выглядит на снимках космического телескопа Хаббл Это удивительное изображение Проксимы Центавра было сделано космическим телескопом «Хаббл». Изображение получилось столь ярким, так как из-за близости звезды к Земле, высокочувствительные сенсоры «Хаббла» буквально заливаются фотонами ее света.

Сама Проксима Центавра это красный карлик, со всеми вытекающими последствиями. Ее масса в 8 раз меньше массы Солнца, диаметр в полтора раза больше диаметра Юпитера, а светимость составляет примерно 0.006% солнечной. Правда, как и большинство красных карликов, Проксима является переменной вспыхивающей звездой и ее светимость иногда возрастает в разы. Что при наличии у нее планет, не способствует возникновению там жизни. Правда пока планет около Проксимы Центавры не обнаружено.

С другой стороны, срок жизни красных карликов может исчисляться триллионами лет. К тому моменту, когда Солнце превратится в белого карлика, Проксима будет, пускай и тускло, но еще очень и очень долго светиться …

Яркие звезды на фото — Центавра А и Центавра B. В кружке Проксима Центавра. Считается, что Проксима Центавра вращается вокруг пары Альфа Центавра А и Альфа Центавра B, которые находятся от нее на расстоянии 0.24 световых года.

Масса Проксима Центавра столь невелика, что ее едва хватает, чтобы поддерживать в глубинах процесс синтеза гелия из водорода и тускло светиться. Она приблизительно в семь раз легче Солнца, а температура ее поверхности составляет «всего лишь» 3000 градусов, что вполовину меньше, чем у нашей родной звезды. Яркость в 150 раз меньше яркости Солнца.

Звезды со столь небольшой массой — очень интересные объекты. Физические условия в их недрах имеют много общего с внутренностями гигантских планет, подобных Юпитеру. Кроме того, вещество таких звезд должно находиться в довольно экзотичном состоянии. Да к тому же существует предположение, что планеты возле подобных звезд могут даже чаще служить колыбелью жизни, чем звезды вроде Солнца.

Звездная система Альфа Центавра на фотографии «Кассини» Стоит отметить что примерно через 25 000 лет система Центавра приблизится к нам на минимальное расстояние 3.26 световых года, а затем постепенно начнет отдаляться от Солнечной системы, чтобы через 100 000 лет уйти на расстояние, с которого даже Альфа Центавра А уже не будет видна невооруженным глазом. Правда в своем движении через Млечный путь, Солнце будет встречаться и с другими звездами, некоторые из которых подойдут к нам куда ближе, чем система Центавры. Например, Глизе 710 может приблизиться к Солнцу на расстояние менее 1 светового года. Правда случится это лишь через 1.4 миллиона лет. Через 9000 лет самой близкой к Солнцу звездой станет быстро движущаяся в нашу сторону звезда Барнарда.

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе — это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 световых лет (1,3 парсек) от Земли. Альфа Центавра — это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 световых лет от Земли — тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Имеет абсолютную величину в 3,4

В астрономии абсолютной величиной характеризуется светимость астрономического объекта. Она позволяет нам определить яркость любого объекта, независимо от его расстояния до нас.

Галактика Андромеды обладает абсолютной величиной 3,4, что позволяет ей являться самым ярким объектом каталога Мессье. В безлунную ночь галактика видна даже невооруженным глазом. Правда стоит отметить, что невооруженным глазом будет видна только центральная часть галактики. Она будет выглядеть как тусклая звезда. Если смотреть на нее в бинокль, то она будет выглядеть как маленькое эллиптическое облако. Если вести за ней наблюдение в большой телескоп, то она может выглядеть до шести раз больше Луны.

Список ближайщих к Солнцу звезд

Звёздная система Звезда или коричневый карлик Спек. класс Вид. зв. вел. Расстояние,св. год
Солнечная система Солнце G2V −26,72 ± 0,04 8,32 ± 0,16 св. мин
1 α Центавра Проксима Центавра 1 M5,5Ve 11,09 4,2421 ± 0,0016
α Центавра A 2 G2V 0,01 4,3650 ± 0,0068
α Центавра B 2 K1V 1,34
2 Звезда Барнарда 4 M4Ve 9,53 5,9630 ± 0,0109
3 Луман 16 A 5 L8 23,25 6,588 ± 0,062
B 5 L9/T1 24,07
4 WISE 0855–0714 7 Y 13,44 7,18+0,78−0,65
5 Вольф 359 8 M6V 13,44 7,7825 ± 0,0390
6 Лаланд 21185 9 M2V 7,47 8,2905 ± 0,0148
7 Сириус Сириус A 10 A1V −1,43 8,5828 ± 0,0289
Сириус B 10 DA2 8,44
8 Лейтен 726-8 Лейтен 726-8 A 12 M5,5Ve 12,54 8,7280 ± 0,0631
Лейтен 726-8 B 12 M6Ve 12,99
9 Росс 154 14 M3,5Ve 10,43 9,6813 ± 0,0512
10 Росс 248 15 M5,5Ve 12,29 10,322 ± 0,036
11 WISE 1506+7027 16 T6 14.32 10,521
12 ε Эридана 17 K2V 3,73 10,522 ± 0,027
13 Лакайль 9352 18 M1,5Ve 7,34 10,742 ± 0,031
14 Росс 128 19 M4Vn 11,13 10,919 ± 0,049
15 WISE 0350-5658 20 Y1 22.8 11,208
16 EZ Водолея EZ Водолея A 21 M5Ve 13,33 11,266 ± 0,171
EZ Водолея B 21 M? 13,27
EZ Водолея C 21 M? 14,03
17 Процион Процион A 24 F5V-IV 0,38 11,402 ± 0,032
Процион B 24 DA 10,70
18 26 K5V 5,21 11,403 ± 0,022
26 K7V 6,03
19 28 M3V 8,90 11,525 ± 0,069
28 M3,5V 9,69
20 30 M1,5V 8,08 11,624 ± 0,039
30 M3,5V 11,06
21 32 K5Ve 4,69 11,824 ± 0,030
32 T1V >23
32 T6V >23
22 35 M6,5Ve 14,78 11,826 ± 0,129
23 36 G8Vp 3,49 11,887 ± 0,033
24 GJ 1061 37 M5,5V 13,09 11,991 ± 0,057
25 YZ Кита 38 M4,5V 12,02 12,132 ± 0,133
26 Звезда Лейтена 39 M3,5Vn 9,86 12,366 ± 0,059
27 40 M6,5V 15,14 12,514 ± 0,129
28 41 M8,5V 17,39 12,571 ± 0,054
42 T6
29 Звезда Каптейна 43 M1,5V 8,84 12,777 ± 0,043
30 44 M0V 6,67 12,870 ± 0,057
31 45 Y1 21,1 13,046
32 Крюгер 60 Крюгер 60 A 46 M3V 9,79 13,149 ± 0,074
Крюгер 60 B 46 M4V 11,41
33 48 M8,5V 17,39 13,167 ± 0,082
34 49 T9 24.32 13,259
35 50 M4,5V 11,15 13,349 ± 0,110
50 M5,5V 14,23
37 53 M3V 10,07 13,820 ± 0,098
38 Звезда ван Маанена 54 DZ7 12,38 14,066 ± 0,109
  №   Обозначение Обозначение   №   Спек. класс Вид. зв. вел. Расстояние,св. год
Звёздная система Звезда или коричневый карлик

Солнце – основа нашей системы – ближайшая к Земле звезда, которую, в отличие от всех остальных объектов, мы отчетливо видим ясным днем. В ночное же время становятся доступны для наблюдения остальные светила бескрайнего космоса. Количество звезд, наполняющих Вселенную, подсчитать невозможно. Но ближайшие небесные тела, находящиеся в радиусе 16 световых лет, ученые обозначили и составили список. В него вошли 57 звездных систем. Некоторые из них – это не одинокие светила, а двойные и тройные звезды, поэтому общее количество небесных тел достигает 64. В перечень внесли и 13 коричневых карликов, ощутимо уступающих остальным объектам по массе.

Ближайшие окрестности Солнца

Только 7 звезд из списка мы можем рассмотреть без помощи оптического усиления – Сириус, Альфа Центавра, Эпсилон Эридана, Процион, Эпсилон Индейца, Тау Кита, 61 Лебедя. Все они имеют видимую величину в границах от 1,43 до 6,03. Большинство светил относятся к спектральному классу M (красный), их температура составляет 2600-3800 K. Горячие звезды – Сириус A, спектрального класса A (белый), 9940 K и Процион A, класс F (желто-белый), 6650 K. Коричневые карлики, вошедшие в список, относятся к дополнительным спектральным классам L, T, Y. В перечень попали и 4 белых карлика класса D, представляющие довольно редкие объекты в видимом секторе Галактики.

Метод стандартных свечей

Для определения расстояний до звезд в других галактиках и расстояний до самих этих галактик используется метод стандартных свечей. Как известно, чем дальше от наблюдателя расположен источник света, тем более тусклым он кажется наблюдателю. Т.е. освещенность лампочки на расстоянии 2 м будет в 4 раза меньше, чем на расстоянии 1 метр.Это и есть принцип, по которому измеряется расстояние до объектов методом стандартных свечей. Таким образом, проводя аналогию между лампочкой и звездой, можно сравнивать расстояния до источников света с известными мощностями.

Масштабы разведанной существующими методами Вселенной впечатляют. Смотреть инфографику в полном размере.

В качестве стандартных свечей в астрономии выступают объекты, светимость (аналог мощности источника) которых известна. Это может быть любого рода звезда. Для определения ее светимости астрономы измеряют температуру поверхности, опираясь на частоту ее электромагнитного излучения. После чего, зная температуру, позволяющую определить спектральный класс звезды, выясняют ее светимость при помощи диаграммы Герцшпрунга-Рассела. Затем, имея значения светимости и измерив яркость (видимую величину) звезды, можно посчитать расстояние до нее. Такая стандартная свеча позволяет получить общее представление о расстоянии до галактики, в которой она находится.

Однако данный метод достаточно трудоемкий и не отличается высокой точностью. Поэтому астрономам удобнее использовать в качестве стандартных свечей космические тела с уникальными особенностями, для которых светимость известна изначально.

Проксима Центавра

Звезда Проксима Центавра — красный карлик, его видимая звёздная величина составляет всего 11,05m.
Абсолютная же звёздная величина равна всего лишь 15,49m.
Поэтому, даже находясь на Альфе Центавра, мы можем видеть Проксиму Центавра неяркой звёздочкой примерно 5-ой звёздной величины.
Расстояние от Солнца до Проксимы Центавра — 4,22 светового года.

Есть предположения, что Проксима Центавра вращается вокруг системы Альфа Центавра с периодом около 500000 лет.
Поэтому, Проксиму Центавра иногда ещё называют Альфа Центавра С, то есть считают её третьим элементом звёздной системы Альфа Центавра.
Радиус орбиты Проксима Центавра вокруг Альфы Центавра составляет около 15 000 ± 700 а. е. или около 0,21 светового года.
Для сравнения: расстояние от Проксимы Центавра до Солнца — лишь в 20 раз больше этого значения.

Принадлежность Проксимы Центавра к системе считается не до конца доказанной.
Однако, в пользу такого предположения говорит то, что векторы собственных движений Проксимы Центавра и отдельно пары Альфа Центавра почти совпадают.
А одинаковые вектора движений присущи именно звёздам, которые входят в одну и ту же систему.

При помощи телескопа «Хаббл» было исследовано пространство около Проксимы Центавра и выяснено,
что на её орбите нет красных карликов. Также нет и суперземель (планет, которые немного больше Земли) в поясе обитаемости.
Однако, 24 августа 2016 года Европейская южная обсерватория подтвердила существование землеподобной планеты в обитаемой зоне Проксимы Центавра.
Планета получила имя «Проксима Центавра b».

Возможна ли жизнь на планете Проксима Центавра b — это спорный вопрос.
Да, планета находится в поясе обитаемости, и это уже большая удача, поскольку пояс обитаемости около такой маленькой звезды очень узок.
Но, Проксима Центавра является периодически вспыхивающей звездой.
Во время этих вспышек резко возрастает уровень не только обычного, но и рентгеновского излучения.
А это уже крайне нежелательно для живых существ (по аналогии с белковой жизнью на Земле).

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.


Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.


В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Artist’s impression of Barnard’s Star and its super-EarthArtist’s impression of Barnard’s Star and its super-Earth

What is the Closest Star?What is the Closest Star?

Планета МеркурийПланета Меркурий

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия — это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии — это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Гипотетический двигатель на антиматерии

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц — пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграмов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Как выглядит аннигиляция?

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это — создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Проект «Дедал» так и не увидел свет

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

Согласитесь, выглядит очень красиво!

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий — и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий