Планета марс

Немного истории

Марс расположен недалеко от нашей планеты Земля, всего-то 55 млн км, по космическим меркам это ничто. Но главное, что четвёртую планету хорошо видно с Земли невооружённым взглядом и если вы найдёте его на звёздном небе, то узнаете его не без труда по цвету.

Так вот, ещё в древние времена, люди научились с лёгкостью отличать Марс от других объектов, из-за характерного цвета. Не зря ему дали такое название, бога войны.

Египтяне называли «Хар Дечер» в переводе означает красный, в Индии давали названия Ангарака или Лохитанга, что тоже означает его характерный цвет. Итак, мы выяснили, что, если наблюдать с Земли, изучаемая нами планета имеет свой характерный цвет, но вот почему Марс красного цвета, давайте постараемся разобраться.

Нептун

У Нептуна цвет бледно-голубой, как у Урана. Причина та же – большое количество метана в его верхних слоях атмосферы. Метан поглощает красный свет, поэтому мы видим синий и голубой. Но цвет Нептуна на фотографиях выглядит более насыщенным и скорее близок к синему, чем к голубому.

Нептун имеет насыщенный голубой цвет, почти синий.

Причина этого – большее удаление Нептуна от Солнца, из-за чего он получает гораздо меньше света. Поэтому голубой выглядит более тёмным, практически синим. К тому же, возможно, в атмосфере, кроме метана, есть еще какой-то неизвестный пока компонент, также сильно поглощающий красный свет и делающий цвет Нептуна насыщеннее.

Сатурн

У Сатурна светло- жёлтый цвет. Здесь мы тоже имеем дело с газовым гигантом и можем видеть только верхние слои его атмосферы и облака. Как и на Юпитере, на Сатурне тоже есть полосы разного цвета, но они не так сильно отличаются по цвету, более «размазаны».

К тому же, самый верхний слой облаков состоит из аммиака, и имеет белый цвет, скрадывая детали и цвет красноватого слоя, расположенного ниже. В итоге более нижний красный слой в сочетании с верхним и дают такой светло-жёлтый цвет.

На земном небе Сатурн и выглядит белой звездой с немного желтоватым оттенком. В телескоп он как раз светло-жёлтый.

Спутники Марса

Рядом с Марсом вращаются две его луны: Фобос и Деймос. В 1877 году их нашел Асаф Холл, давший наименования в честь персонажей из греческой мифологии. Это сыновья бога войны Ареса: Фобос – страх, а Деймос – ужас. Марсианские спутники продемонстрированы на фото.

Фобос и Деймос, запечатленные MRO. Это крошечные нерегулярные спутники, которые могли притянуться планетой из пояса астероидов

Диаметр Фобоса – 22 км, а отдаленность – 9234.42 – 9517.58 км. На орбитальный проход ему необходимо 7 часов и постепенно это время сокращается. Исследователи считают, что через 10-50 млн. лет спутник врежится в Марс или же будет разрушен гравитацией планеты и образует кольцевую структуру.

Деймос в диаметре имеет 12 км и вращается на дистанции в 23455.5 – 23470.9 км. На орбитальный маршрут уходит 1.26 дней. Марс также может располагать дополнительными лунами с шириной в 50-100 м, а между двумя крупными способно сформироваться пылевое кольцо.

Есть мнение, что ранее спутники Марса были обычными астероидами, которые поддались планетарной гравитации. Но у них наблюдаются круговые орбиты, что необычно для пойманных тел. Они также могли сформироваться из материала, вырванного от планеты в начале создания. Но тогда их состав должен была напоминать планетарный. Также мог произойти сильный удар, повторяя сценарий с нашей Луной.

Своеобразие марсианских ледяных шапок

Еще одна занимательная черта планеты Марс, это наличие ледяных шапок, причем как на северном, так и на южном полушарии. Изменение времен года отражается в первую очередь именно на ледниковых покровах полюсов – они изменяют размер. Ледяная шапка северного полушария (диаметр составляет около – 1 000 километров, при толщине до 4 километров) может значительно изменять размер в течении года, а на южном полушарии – так и вовсе исчезать. На Южном полюсе есть большое количество гейзеров, которые при повышении температуры вырываются наружу, вынося с собой углекислый газ, смесь из пыли и песка.

Структурный состав ледяных шапок на полюсах планеты определяется наличием в них твердого диоксида углерода, который при увеличении температуры переходит в газообразное состояние. В весенний период ледяные шапки становятся меньше, повышая давление, что приводит к перемещению газовых масс.

Сколько лететь до Марса по времени

Хотя на Красную планету ещё не ступала нога человека, беспилотных космических аппаратов и «марсоходов» здесь побывало уже немало. Сколько они летели от Земли до Марса по времени?

Чтобы лучше понять расстояние, сколько лететь до Марса от Земли по времени, нужно узнать кое-что о предыдущих миссиях на эту планету:

  1. Mariner-4. Первым к «Красной планете» в 1964 году приблизился Маринер-4 (Mariner-4, от англ. – Моряк) – автоматическая межпланетная станция программы НАСА. Путь в один конец составил 228 дней. Аппарат делал снимки Марса с расстояния от 16 800 км до 12 000 км до его поверхности – учёные следили, затаив дыхание. Ведь первоначально допускалось, что на Марсе может быть вода в жидком состоянии, а значит – растения и другие виды жизни. 21 снимок передал Маринер-4, и окончательно выяснилось, что «Красная планета» больше напоминает Луну, чем Землю. А из живых организмов здесь могут быть разве что мхи и лишайники.
  2. Mariner-6(Маринер-6) отправился в путь в феврале 1969 года. На полёт ему понадобилось 155 дней. Расстояние до поверхности планеты на этот раз составило всего 3429 км. Помимо съёмок, на данный аппарат возлагалась важная задача – исследовать состав атмосферы и определить температуру поверхности Марса, исходя из показателей инфракрасного излучения.
  3. Mariner-7 (Маринер-7) был дублёром Маринера-6, его путешествие к Марсу длилось 128 дней. Он также изучал атмосферу и температуру планеты.
  4. В 1971 году к Марсу отправился Маринер-9 (Mariner-9). Он добрался до заданной точки за 168 дней. И стал первым спутником «Красной планеты». С помощью этого аппарата была составлена карта Марса. Работал он до октября 1972 года. пока у него не кончились запасы сжатого газа.
  5. Viking-1 (Викинг-1). Первый аппарат, предназначенный для посадки на Красную планету был запущен 19 июня 1976 года, добрался за 304 дня.
  6. Viking-2 (Викинг-2) стартовал 7 августа 1976 года и добирался до Марса 333 дня. Он также состоял из орбитальной станции и зонда. Основная задача, стоявшая перед аппаратами данной космической программы, была следующей: поиски жизни. Также тогда было сделано около 16 тыс. снимков Марса. На первых цветных фотографиях Марс подтвердил своё второе название. Планета представляла собой красную пустыню, и даже небо казалось розовым из-за пыли, которую поднимал ветер.
  7. В 1996 году за изучение планеты принялся Mars Global Surveyor (Марс Глобал Сервейор), долетевший до Марса за 308 дней. Это был также проект НАСА, и очень успешный. Аппарат вышел на круговую полярную орбиту Марса в 1999 году и занимался картографированием поверхности планеты. Работал до 2001 года.
  8. Mars Pathfinder (Марс Патфайндер), аппарат США, стартовавший 4 декабря 1996 года, 4 июля 1997 года совершил посадку на планету, Он изучал марсианские камни, температуру поверхности, ветер и делал снимки.
  9. Mars Express (Марс-экспресс) – станция Европейского космического агентства – отправилась в путь 25 декабря 2003 г и достигла цели за 201 день.
  10. Mars Reconnaissance Orbiter (Марсианский разведчик) полетел к Марсу в августе 2005 г, а в марте 2006-го вышел на его орбиту. Дорога заняла 210 дней. Одной из целей, стоящих перед «Разведчиком» было найти место, где могли бы высадиться люди.
  11. Maven (Мавен) – американский межпланетный зонд– был запущен в ноябре 2013 года и летел до Марса 307 дней. Основной его задачей было исследование атмосферы «Красной планеты».

Как видно из приведённых данных, время в пути зависит от взаимного расположения небесных тел.

Неудачные полеты

Помимо этих, достаточно успешных проектов, было ещё немало других, окончившихся неудачно. Например, технические неполадки, регулярно преследовали «Марсы», построенные в СССР. То происходила авария ракеты-носителя, то не срабатывала разгонная ступень, то была утеряна связь с аппаратом. А «Зонд-2», отправленный Советским Союзом к Марсу в 1964 году, вообще не попал в район планеты.

Впрочем, неудачи на этом поприще преследовали не только СССР. В 1971 году у «Маринера-8»(Mariner-8) США произошла авария ракеты-носителя, в 1998 году свой аппарат на орбиту Марса не удалось вывести японцам, в 2011 году была неудачная попытка запуска у Китая.

Всё это говорило о том, как трудно спланировать и выполнить такой полёт. И в сотни раз умножается ответственность, когда на борту летят люди.

Краткая история изучения

Впервые человечество начало наблюдать за Марсом отнюдь не через телескопы. Ещё древние египтяне заметили Красную планету как блуждающий объект, что подтверждается древними письменными источниками. Египтяне впервые рассчитали траекторию движения Марса относительно земли.

Затем эстафету переняли астрономы Вавилонского царства. Учёным из Вавилона удалось более точно определить расположение планеты и измерить время её движения. Следующими были греки. Им удалось создать точную геоцентрическую модель и с её помощью понять движение планет. Затем учёные Персии и Индии смогли оценить размер Красной планеты и её расстояние до Земли.

Огромный прорыв сделали европейские астрономы. Иоганн Кеплер, взяв за основу модель Николая Каперника, смог рассчитать эллиптическую орбиту Марса, а Христиан Гюйгенс создал первую карту его поверхности и заметил ледяную шапку на северном полюсе планеты.

Появление телескопов стало расцветом в изучении Марса. Слайфер, Барнард, Вокулёр и многие другие астрономы стали величайшими исследователями Марса до выхода человека в космос.

Выход человека в космос позволил изучать Красную планету более точно и подробно. В середине 20 века с помощью межпланетных станций были сделаны точные снимки поверхности, а сверхмощные инфракрасные и ультрафиолетовые телескопы позволили измерить состав атмосферы планеты и скорость ветров на ней.

В дальнейшем последовали всё более точные исследования Марса со стороны СССР, США, а затем и других государств.

Изучение Марса продолжается и по сей день, а полученные данные только подогревают интерес к его изучению.

Теории появления диоксида железа

Окислы железа — это обыкновенная ржавчина, образующаяся в результате окисления металла из-за воздействия на него воды и кислорода воздуха. Сегодня на Марсе нет никаких условий для ее образования: вода здесь существует лишь в виде льдов на полярных шапках, а содержание кислорода в атмосфере — менее 0,15%.


Диоксиды железа  — соединения железа с кислородом. Credit: china.org.ru

Ученые выдвигают 4 версии появления на поверхности планеты диоксида железа и других окислов:

  1. Это продукт извержения древних вулканов. В марсианском ядре и сейчас содержится до 85% железистых соединений в расплавленном виде.
  2. Они появились здесь в результате бомбардировки Марса метеоритами, которые падали на его поверхность, разрушались, выделяя содержащую оксиды железа красную пыль, а она равномерно распространилась местными бурями по всей планете.
  3. На местное железо долгое время оказывал воздействие кислород воздуха, содержавшийся когда-то в атмосфере в больших количествах, а позже испарившийся.
  4. На Красной планете на ранних стадиях ее развития была вода, способствовавшая окислению горных пород в теплом климате до того, как он стал излишне жарким.

Особенности поверхности

Марсианский пейзаж пустынный, сухой и пыльный. Поверхность состоит из горных структур (включая вулканы), равнин, глубоких впадин и протяженных песчаных дюн. Здесь также немало древних, но хорошо сохранившихся из-за медленной эрозии, кратеров.

Равнины

Они занимают большую часть планеты, особенно в северном полушарии. Одна из них — Великая Северная — самая крупная космическая равнина Солнечной системы. Ее относительно гладкая поверхность говорит о возможном нахождении здесь в далеком прошлом воды.

Каньоны

Их на Марсе целая сеть, а расположены они преимущественно в экваториальной области. Долина каньонов получила название в честь космической миссии, корабли которой открыли эти образования в 1971 г. Длина «Долины Маринер» равна протяженности австралийского материка. Глубина некоторых каньонов достигает 10 км.

Вулканы

Поверхность Красной планеты содержит множество вулканов, но среди них не обнаружено ни одного действующего. О бывшей вулканической деятельности Марса свидетельствует наличие характерных для нее пород и большого количества пепла.

Почему Марс красный?

Почему именно Марс называют красной планетой все дело в том, что окрас поверхности сравним с цветом ржавчины. Многие камни и метеориты на планете содержат железо, окисляясь, они принимают красноватый оттенок примерно так же, как ржавеет, метал на земле.
Это становится очевидным при изучении полученных данных, сделанных марсоходами. При проведении исследований выяснилось, поверхность планеты по соседству с нами действительно преимущественно красного цвета. В качестве вещества, придающего почве и атмосфере красный оттенок, выступает продукт окисления железа – маггемит, напоминающий ржавчину.

Вещество придает грунту особый багряный оттенок, из-за чего вопроса какая планета в Солнечной системе является красной, не возникает: под это описание попадает только Марс.

Спутники Марса

Видимо, астрономы питают определенную слабость к древнегреческой мифологии, ведь два спутника планеты — Фобос и Деймос — были названы в честь сыновей бога войны Ареса (Марса).

Оба спутника имеют неправильную несферическую форму и напоминают астероиды класса С. Они покрыты кратерами, толстым шаром пыли и состоят из каменистых пород.

Из-за близкого расположения Фобоса к Марсу – в 68 раз ближе, чем расстояние между Луной и Землей, которое к тому же сейчас сокращается на 1,8 см в год, – спутник обречен на верную гибель.


Фобос — больший спутник Марса
Деймос — меньший спутник планеты Марс

В итоге он либо распадется на мелкие части, образуя кольцо вокруг планеты, либо упадет на Марс. Хорошая новость состоит в том, что случится это лишь через 20-40 миллионов лет.

Атмосфера и температура планеты Марс

Красная планета располагает тонким атмосферным слоем, который представлен углекислым газом (96%), аргоном (1.93%), азотом (1.89%) и примесями кислорода с водой. В ней много пыли, размер которой достигает 1.5 микрометра. Давление – 0.4-0.87 кПа.

Большое расстояние от Солнца к планете и тонкая атмосфера привели к тому, что температура Марса низкая. Она скачет между -46°C до -143°C зимой и может прогреваться до 35°C летом на полюсах и в полдень на экваториальной линии.

Тонкая марсианская атмосфера и пыльная красная поверхность, отображенные аппаратом Викинг-1 в 1976 году

Марс отличается активностью пылевых бурь, которые способны имитировать мини-торнадо. Они образуются благодаря солнечному нагреву, где более теплые воздушные потоки поднимаются и формируют бури, простирающиеся на тысячи километров.

При анализе в атмосфере также нашли следы метана с концентрацией 30 частичек на миллион. Значит, он освобождался из конкретных территорий.

Исследования показывают, что планета способна создавать в год до 270 тонн метана. Он достигает атмосферного слоя и сохраняется 0.6-4 лет до полного разрушения. Даже небольшое наличие говорит о том, что на планете скрывается газовый источник. Нижний рисунок указывает концентрацию метана на Марсе.

Распределение метана в атмосфере Марса

Среди предположений намекали на вулканическую активность, падение комет или наличие микроорганизмов под поверхностью. Метан может создаваться и в небиологическом процессе – серпентинизация. В нем присутствует вода, углекислый газ и минеральный оливин.

В 2012 году провели несколько вычислений по метану при помощи ровера Curiosity. Если первый анализ показал определенное количество метана в атмосфере, то второй показал 0. А вот в 2014 году ровер натолкнулся на 10-кратный всплеск, что говорит о локализированном выбросе.

Также спутники зафиксировали наличие аммиака, но его срок разложения намного короче. Возможный источник – вулканическая активность.

14-секундное знакомство

Первые попытки посадить на планету автоматический аппарат осуществил Советский Союз в начале 1960-х годов. Правда, все они закончились провалом. «Марс 1960А» и «Марс 1960Б» не достигли планеты из-за аварий ракеты-носителя «Молния». Чуть более успешным оказался запуск станции «Марс-1», которая, несмотря на Карибский кризис, все же сумела взлететь с Байконура и подобраться к планете на расстояние в 200 тыс. км, после чего связь с аппаратом была утрачена.

Межпланетная станция «Марс-1», 1963 год

(Фото: Альберт Пушкарев / ТАСС)

В дальнейшем Советскому Союзу удалось лишь 14-секундное пребывание на Марсе: в 1971 году аппарат «Марс-3» сумел успешно приземлиться на планету, однако сильнейшая пылевая буря прервала связь с марсоходом. Много большее удалось американцам.

В 1965 году аппарат «Mariner- 4» подлетел к планете на минимальное расстояние до ее центра — 13 200 км — и сумел сделать 21 изображение с разрешением порядка одного км. Затем уже в 1971 году был запущен первый искусственный спутник планеты «Mariner-9», который доставил на Землю тысячи новых и куда более детализированных снимков.

Например, оказалось, что Марс испещрен вулканическими и тектоническими геологическими формациями, что на нем есть высохшие русла водных потоков. С того момента начались масштабные исследования атмосферы и ионосферы планеты, а также ее окружающей среды.

Наконец, в 1975 году на планету успешно приземлились две автоматические станции «Viking 1» и «Viking 2». На Землю было отправлено более 50 тыс. снимков, которые позволили составить первый картографический набросок планеты. После этого успешных марсианских экспедиций не было более 20 лет. Только в 1996 году на орбиту вышел «Mars Global Surveyor», который сумел сделать уникальные по своей четкости изображения Марса.

Фотография возможного водостока в одном из кратеров Марса, сделанная во время миссии Mars Global Surveyor, 2005 год

(Фото: NASA)

Сегодня в сторону планеты движется новый исследовательский аппарат «Настойчивость» (Perseverance). В случае удачи, марсоход в 2029 году передаст орбитальному кораблю первые образцы марсианского грунта, которые будут доставлены на Землю.

Это особенно важно, потому что за счет мощностей наземных лабораторий ученые смогут определить биологическое происхождение марсианской почвы, а в перспективе — хотя бы частично реконструировать историю жизни на этой планете. В целом за 60 лет активных исследований Марса общее количество миссий на эту планету достигло 45

Из них только 19 были успешными. И это — миссии только для автоматических аппаратов. О пилотируемом полете человека мы пока не вели даже речи

В целом за 60 лет активных исследований Марса общее количество миссий на эту планету достигло 45. Из них только 19 были успешными. И это — миссии только для автоматических аппаратов. О пилотируемом полете человека мы пока не вели даже речи.

2080-е года Марсианское правительство

По завершению основной стадии колонизации произойдет избрание планетарного марсианского совета, в состав которого войдут в равном количестве представители от каждого города. Совет начнет свою работу по принципу самоуправления и будет заниматься решением вопросов, важными для всех марсиан. Таких, как текущие инициативы по терраформированию или строительству космических лифтов. Также совет выступит в качестве представителя населения в отношениях с корпорациями и правительствами Земли.

  • Стоимость отправки груза любой массы в колонию и другие точки космоса значительно сократится. Что позволит повысить скорость покорения космоса и увеличить использование космических ресурсов.
  • Колонисты начнут покидать старейшие участки базы Альфа, инфраструктура которой к этому моменту изрядно устареет. Этот район будет объявлен национальным достоянием, как первое человеческое пристанище и станет туристической достопримечательностью.
  • Марсианский туризм обзаведется большой популярностью. Даже люди среднего класса смогут позволить себе посетить красную планету. Каждому захочется увидеть конечный результат покорения Марса.
  • Несмотря на возражения и критику подобной реформы, Китай возведет первую марсианскую тюрьму, которой вскоре начнут пользоваться и другие колонии, отправляя туда преступников.
  • Будут созданы более мощные заводы по производству галокарбонов. Бактериальный и лишайниковый покров вокруг поверхности планеты изрядно увеличится.
  • Человечество также продолжает покорение спутников. На Фобосе начнется постройка подключенных базовых станций для космических лифтов вверх-вниз. Нисходящий лифт будет отрезан от верхнего края атмосферы с челночной платформой на его вершине. Внешний лифт будет иметь несколько платформ в разных точках, чтобы принимать и отправлять грузы в систему Земли, в главный пояс астероидов и в систему Юпитера.
  • Начнется строительство большого челночного порта на вершине марсианского вулкана, практически на экваторе горы Павлина. Челноки с этого порта будут направляться к космическому лифту Фобоса, и прибывать с него.
  • В 2080-х годах население увеличится с 200000 до 500000 человек, а количество жителей в самом большом из марсианских городов – Марс-Сити – превысит 150000 человек. На 2082 год, когда Земля и Марс будут находиться ближе всего, в 55,9 миллиона километров друг от друга, запланировано прибытие наибольшего колониального флота.

Теории появления диоксида железа

Звание красной планеты Марс получил из-за высокого содержания диоксида и оксида железа в грунте. Он образуется при взаимодействии железа и кислорода. Большое количество подобного вещества в грунте позволяет предполагать, что в прошлом атмосфера содержала кислород в больших количествах. Однако вещества обнаружены не только на каменистой поверхности. Много пыли оксида железа содержится и в атмосфере планеты. Теорий, почему так уникальна поверхность Марса и откуда на планете появилось огромное количество окисленного железа, всего две.

Первая теория

Наличие диоксида некоторыми учеными объясняется возможным наличием воды в атмосфере и на поверхности планеты на ранних стадиях развития. Обилие жидкости при достаточно теплом климате способствовало окислению пород. Самые мелкие частицы пыли могли испаряться, а затем вновь выпадать на поверхность вместе с осадками.

Вторая теория

Большое содержание железа в грунте также может быть вызвано окислением метеоритов, которые ранее в больших количествах падали на поверхность красной планеты. В результате химического процесса на Марсе образовалось большое количество красной пыли, содержащей диоксид железа, которая из-за сильнейших бурь равномерно распространилось по всей планете.

Как выглядит Марс сейчас

Сейчас Марс — это холодная планета, покрытая каменистым грунтом, не имеющая жидкой воды на поверхности. Обилие кратеров и вулканов рассказывает об истории планеты. Сейчас это погибшая планета, оставившая на своей поверхности множество силикатов и минеральных пород. Перемещающиеся песчаные дюны Марса остаются неуловимой загадкой планеты.

Марсианские хроники так и не дают однозначного ответа, на волнующий весь мир вопрос: что произошло с Марсом, почему он погиб.
История Марса, не смотря на большое количество полученных достоверных фактов, хранит неразгаданные тайны, открытие которых поможет взглянуть не только в историю планеты, но и спрогнозировать ее будущее.

Пригодилась информация? Плюсани в социалки!

  • Откуда на Марсе нефть?
  • Что в переводе означают два спутника Марса
  • Чему равна первая, вторая космическая скорость для Марса

Почему Марс так популярен

Интерес сильных мира сего к нашему соседу – планете Марс – значительно превышает даже интерес к Луне, хотя, со всех точек зрения освоение незаслуженно забытой спутницы дало бы куда больший эффект. Да и Венера могла бы быть куда более интересным объектом исследований: она ближе, лететь к ней легче (в сторону Солнца), у неё плотная атмосфера (легче «привенериваться»), да и загадок там поболе. Но Марс манит НАСА, заставляя выуживать деньги из карманов налогоплательщиков.

История изучения этой планеты полна загадок. Так мой отец рассказывал, что, будучи еще ребёнком, видел в планетарии фильм о Марсе, где показывали кадры с каналами, шапками и морями. Полярные шапки на глазах таяли и уменьшались, каналы зеленели, и волна потемнения докатывалась до «морей».

Сейчас в Интернете найти упоминания о марсианских каналах довольно трудно, да и то лишь в форме научного казуса и заблуждения. А между тем, известный исследователь Феликс Зигель в 1951 г. писал:

Из истории исследования марсианских каналов

В наше время говорить о марсианских каналах считается несерьёзным. А между тем, в преддверии приведённого вывода имел место длительный научный спор. Ещё в конце 19 в. итальянский астроном Джованни Скиапарелли впервые объявил об открытии каналов. Многие учёные пытались его опровергнуть. Но американский дипломат Ловелл посвятил всю свою жизнь и пожертвовал карьерой, чтобы установить истину. В 1908 г. Ловелл создал карту марсианской системы каналов и полностью подтвердил открытие итальянского коллеги.

Однако, если мы взглянем на современный снимок Марса, то никаких каналов там не увидим. Куда же подевались каналы? Или они – иллюзия?

Но, что ещё более интересно, вы видите, что планету пересекает громадная прямолинейная рытвина? Это Долина Маринер, длина 4500 км, ширина – до 200, а глубина до 11 км!

Но самое главное – Долина почти прямолинейна, это не просто обычное геологическое образование, это – след удара космического тела колоссальной силы.

Фото из самого Гугла!

Виден путь этой гигантской борозды, следы ударов от неровностей вращающегося тела, разрывы коры в начале удара.

Как могли учёные в 20 в. не заметить такого крупного образования на соседней планете? Почему оно не попало на снимки? Да и было ли оно ещё совсем недавно? Дело в том, что для нашей науки Марс вообще – планета загадок. Вот как их видят Грэм Хэнкок и Джон Гризби в книге «Тайны Марса»

«Факт 1. У него эллиптическая, большого эксцентриситета орбита, которая ежегодно приносит его близко к Солнцу и затем относит очень далеко от него.

Факт 2. Скорость вращения планеты гораздо меньше, чем ей следовало бы быть.

Факт 3. У неё почти нет магнитного поля.

Факт 4. На протяжении долгих периодов её ось вращения выписывает в пространстве дикие «кренделя», коренным образом меняя угол своего наклона к Солнцу.

Факт 5. Есть данные о том, что в прошлом марсианская кора могла в нескольких случаях скользить целиком вокруг внутренних пластов планеты, когда её массы перемещались с полюсов в экваториальные зоны, и наоборот.

Факт 6. Огромное большинство марсианских импактных (ударных) кратеров гораздо больше, чем следовало бы по статистической вероятности, теснится в полушарии к югу от так называемой «линии раздела» (см. Главу 3).

Факт 7. Северное полушарие гораздо меньше изрыто кратерами и представляет собой сплошной бассейн на 3 километра ниже по высоте, нежели южное полушарие.

Факт 8. Линия раздела между севером и югом физически отмечена на поверхности Марса откосом гористого южного полушария. Этот уникальный раздел обегает вокруг всей планеты огромной неровной окружностью, которая пересекает экватор под Углом около 35 градусов.

Факт 9. Уникальная примета Марса – прорытая в его поверхности чудовищная бездна долины Маринеров 7 километров глубиной и 4 тысячи километров длиной.

Факт 10

И последнее, но не менее важное: самые глубокие и широкие в Солнечной системе кратеры – Эллада, Исида и Аргир, удачно «компенсированные» на другой стороне Марса выпуклостями Элизий и Фарсида, от восточного края которой начинается долина Маринеров…»

Поверхность Марса

Грунт покрыт скалами. Среди движущихся песчаных дюн разбросаны валуны. Плоские горы смотрят в нежно розовое небо. Даже в летнее утро лужицы воды замерзли, а красные скалы выбелены застывшей двуокисью углерода.

Интересный факт: Марс красный, потому что в его почве много окиси железа.
Марсианский грунт

Этот минерал отражает красные лучи, поэтому и окрашен в такие цвета. Другими словами, почва Марса содержит очень много ржавчины. Так что если вы хотите воочию посмотреть, какого цвета Марс, то полюбуйтесь на старую ржавую чугунную сковороду. Ветер гонит частицы марсианской почвы по поверхности планеты, покрывая серые вулканические скалы толстым слоем ржавчины.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий