Визуально-двойные звезды

Спектрально-двойные звезды

Нередко получается так, что одна звезда звездной системы расположена слишком близко к другой. Настолько, что даже самый мощный телескоп не способен уловить их двойственность. В этом случае на помощь приходит спектрометр. При прохождении через прибор свет разлагается на спектр, разграниченный черными линиями. Эти полосы смещаются по мере приближения или удаления светила от наблюдателя. При разложении спектра двойной звезды получается два вида линий, смещающихся при движении обоих компонентов друг вокруг друга. Так, Мицар А и В, Алькор – спектрально-двойные. При этом они еще и объединены в большую систему из шести звезд. Так же визуально-двойные компоненты Кастор – звезда в созвездии Близнецов – являются спектрально-двойными.

Классификационные особенности

С физической точки зрения, рассматриваемые двойные звёзды могут быть разделены на 2 категории.

  1. Звёзды, между которыми массовые обменные реакции невозможны. Они являются разделёнными.
  2. Звёзды, между которыми наблюдался, наблюдается или будет наблюдаться массовый обмен. Они могут быть разделёнными наполовину или контактными.

Разделение по категориям осуществляется и в зависимости от способа наблюдения. Двойные звёзды могут быть выделены спектральные, астрономические, визуальные, затменные системы двойного типа.

Тесная двойная система, система KOI-256, состоящая из красного и белого карликов. Иллюстрация NASA.

Визуальные

Двойные звёзды, которые наблюдаются раздельно, называются видимыми объектами. Возможность их видимости определяется разрешающей опцией телескопа, а также дистанцией до космических объектов. Они обладают большим по продолжительности периодом обращения, поэтому отслеживание орбиты допустимо исключительно спустя несколько десятков лет. В настоящее время из сотен тысяч объектов выделить орбиту можно только в сотнях единиц.

Спекл-интерферометрические

Как и адаптивная оптика, данное направление способствует достижению максимального значения дифракционного предела разрешения. А это способствует обнаружить двойные звёзды без проблем. Представители данной группы также являются двойными. Но если в случае с первой группой требуется получение двух отдельных изображений (для наблюдения), то в ситуации со второй категорией приходится обеспечивать анализ спекл-интерферограмм.

Астрономические

Говоря о первой группе, по небу можно заметить перемещение двух объектов одновременно. Но если представить, что один из двух элементов является незаметным, двойственность может быть обнаружена в любом случае (при изменении положения второго объекта на небе). В этой ситуации речь ведётся об астрономических-двойных звёздах. Если имеют место высокоточные наблюдения, двойственность может быть определена посредством фиксации движения. Представители этой группы на практике используются для определения массовых значений коричневых карликов.

B Cyq — бета Лебедя. Альбирео. Звездная пара в созвездии Лебедя. Голубоватый спутник, который в 200 раз ярче Солнце, вращается вокруг желтой звезды, превосходящая Солнце по яркости в 1000 раз

Спектральные

Такими звёздами называют светила, двойственность которых может быть обнаружена посредством использования спектральных аналитических исследований. Для этого наблюдения организуются на протяжении нескольких ночей. Если происходит смещение линий спектра с течением времени, это говорит об изменении скорости источника. Причин тому может быть несколько:

  • переменный характер светила;
  • присутствие у него плотной оболочки, которая появилась вследствие вспышки сверхновой звезды.

Имея спектроскопические сведения, не составит труда определить массы компонентов. Наряду с этим, можно запросто определить дистанции между ними, выявить период обращения, орбитальный эксцентриситет. Что касается угла, который имеет наклон орбиты, определить его на основании этих сведений невозможно.

Мицар и Алькор. Мицар справа — двойная звезда. Слева — спутник Алькор. Между ними всего один световой год

Затменно-двойные

Нередко случается такое, что орбитальная плоскость имеет наклон к лучу зрения, и он является небольшим. В итоге можно наблюдать, что орбиты располагаются будто бы ребром. В рамках подобной системы двойные звёзды будут, затмевать друг друга. Это приведёт к изменению блеска пары.

Микролинзированные

Если луч зрения, образованный между светилом и человеком, который за ним наблюдает, содержит тело, обладающее мощным полем гравитации, объект входит в данную категорию. Если бы поле было чрезмерно сильным, наблюдалось бы одновременно несколько звёздных изображений. Однако в случае с галактическими объектами поле является не настолько сильным, чтобы наблюдателю было доступно делать различия между несколькими изображениями.

Если в качестве гравирующего тела выступает двойные звёзды, кривая блеска, образуемая в процессе прохождения вдоль луча зрения, заметно отличается от одиночного светила. За счёт микролинзирования осуществляется поиск двойных звёзд, в рамках которых оба компонента являются недостаточно массивными и именуются коричневыми карликами.

Гравитационное взаимодействие между компонентами[править]


Изображение Переменной звезды Миры (омикрона Кита), сделанное космическим телескопом им. Хаббла в ультрафиолетовом диапазоне. На фотографии виден аккреционный «хвост», направленный от основного компонента — красного гиганта к компаньону — белому карлику

Двойные звёзды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром масс этих звёзд. Если расстояние между партнёрами достаточно велико, орбитальный период может измеряться годами, а иногда целым столетием или даже больше. Для тесных систем орбитальный период может составлять всего несколько часов. В случае, когда две достаточно массивные звезды вращаются вокруг общего центра тяжести на близком расстоянии друг от друга, становятся заметными релятивистские эффекты, такие как смещение периастра и сокращение орбитального периода за счёт излучения системой гравитационных волн (последнее приводит к тому, что в конце концов две звезды сталкиваются).

Экзопланеты в двойных системах

Экзопланета, находящаяся в двойной системе Kepler-47, в представлении художника

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звёзд значительно превышает число планет, найденных в звёздных системах разной кратности. По последним данным последних насчитывается 64.

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит:

  • Экзопланеты S-класса обращаются вокруг одного из компонентов (например OGLE-2013-BLG-0341LB b). Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b и Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится:

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 а. е., концентрируясь вокруг значения в 20 а. е.
  2. Планеты в широких системах (> 100 а. е.) имеют массу от 0,01 до 10 MJ (почти как и для одиночных звёзд), в то время как массы планет для систем с меньшим разделением лежат от 0,1 до 10 MJ
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0,925 и e = 0,935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звёзд протопланетный диск может тянуться вплоть до пояса Койпера (30-50 а. е.), то в двойных звёзд его размер обрезается воздействием второго компонента. Таким образом протяжённость протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращения время жизни протопланетного диска. Для широких двойных, как и для одиночных время жизни протопланетного диска составляет 1-10 млн лет. Одна для систем с разделением < 40 а. е. Время жизни диска должно составлять в пределах 0,1-1 млн лет.

Несовместные сценарии образования

Существуют сценарии, в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев — захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Примечания[править | править код]

  1. 12А.А. Киселев. Двойные звезды(неопр.) . Астронет (12 декабря 2005). Дата обращения 27 апреля 2013.
  2. 12345А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: ВЕК 2, 2006. — С. 208—223. — 398 с. — 1500 экз. — ISBN 5-85099-169-7.
  3. Speckle Interferometry and Orbits of «Fast» Visual Binaries
  4. V. V. Makarov and G. H. Kaplan. Statistical Constraints for Astrometric Binaries with Nonlinear Motion. — Bibcode: 2005AJ….129.2420M.
  5. Pope, Benjamin; Martinache, Frantz; Tuthill, Peter. Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry. — 2013. — Bibcode: 2013ApJ…767..110P.
  6. Gravitational Microlensing of Binary Stars: Light Curve Synthesis. — 1997. (недоступная ссылка)
  7. Choi, J.-Y.; Han, C.; Udalski, A.; Sumi, T etc. Microlensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs. — 2013. — Bibcode: 2013ApJ…768..129C.
  8. В.М. Липунов. Парадокс Алголя(неопр.) .
  9. Richard B.Larson. Implications of binary properties for theories of star formation (англ.). — 2001. Архивировано 28 мая 2008 года.
  10. 123Kaitlin M. Kratter. The Formation of Binaries (англ.). — 2011. — Bibcode: 2011ASPC..447…47K. — arXiv:1109.3740.
  11. 123Zhou, Ji-Lin; Xie, Ji-Wei; Liu, Hui-Gen; Zhang, Hui; Sun, Yi-Sui. Forming different planetary systems.
  12. 123А. В. Гончарский, А.М. Черепащук, А.Г. Ягола. Некорректные задачи астрофизики. — Москва: Наука, 1985. — С. 68—101. — 351 с. — 2500 экз.
  13. Hans Zinnecker. Binary Stars: Historical Millestones (англ.) : материалы конференции. — The formation binary stars IAU symposium, 2001. — Vol. 200. Архивировано 28 мая 2008 года.

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Основная статья: Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П. Паренаго, обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более

Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается.

Обмен массами между звёздами

Основная статья: Полость Роша

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая


Сечение поверхностей равного потенциала в модели Роша в орбитальной плоскости двойной системы

Тогда для компонентов M1 и M2 с суммой больших полуосей a=a1+a2 введём систему координат, синхронную с орбитальным вращением ТДС. Центр отсчёта находится в центре звезды M1, ось X направлена от M1 к M2, а ось Z — вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой:

Φ=−GM1r1−GM2r2−12ω2(x−μa)2+y2{\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left},

где r1= x2+y2+z2 , r2= (x-a)2+y2+z2 , μ= M2/(M1+M2), а ω — частота вращения по орбите компонентов. Используя третий закон Кеплера, потенциал Роша можно переписать следующим образом:

Φ=−12ω2a2ΩR{\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}},

где безразмерный потенциал:

ΩR=2(1+q)(r1a)+2(1+q)(r2a)+(x−μa)2+y2a2{\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}},

где q = M2/M1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const. Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L1. Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения.

Новые

Основная статья: Новая звезда

Новыми называют звёзды, кратковременно (недели, месяцы) увеличивающие свою светимость в тысячи (до сотен тысяч) раз. По результатам исследований, все такие звёзды являются двойными, одна из компонент является белым карликом, а вторая — звездой обычной плотности, полностью заполняющей свою полость Роша.

Рентгеновские двойные

Основные статьи: Рентгеновская новая и Рентгеновский пульсар

Рентгеновскими двойными называют тесные пары, где одна из звёзд — компактный объект, нейтронная звезда или чёрная дыра, и жёсткое излучение возникает в результате падения вещества обычной звезды (достигшей границ полости Роша) на аккреционный диск, образующийся вокруг компактного компонента пары.

Симбиотические звёзды

Основная статья: Симбиотические звезды

Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окружённых общей туманностью. Для них характерны сложные спектры, где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п.). Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки, во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1—100 лет.

Барстеры

Основная статья: Барстер

Разновидность рентгеновских двойных, дающих излучение короткими вспышками (секунды) с промежутками в десятки секунд.

Сверхновые типа Ia

Основная статья: Сверхновая типа Ia

Такие сверхновые образуются в двойной системе, когда при аккреции масса компактного компонента (белый карлик) достигает предела Чандрасекара, либо происходит углеродный взрыв.

Кратные звёзды

Как понятно из названия, если число взаимосвязанных звёзд превышает две, то это кратные звёздные системы или кратные звёзды. Их также разделяют на оптически и физически кратные звёзды. Если число звёзд в системе можно увидеть невооружённым глазом, в бинокль или телескоп, то такие звёзды называются визуально кратными. Если для определения кратности системы требуются дополнительные спектральные измерения, то это спектрально кратная система. И, если же кратность системы определяется по изменению блеска, то это затменно-кратная система. Простой пример тройной звезды показан ниже — это звезда HD 188753 в созвездии Лебедь:

Как видно на изображении выше, в тройной системе есть пара тесно связанных звёзд и одна удалённая с большей массой, вокруг которой и происходит вращение пары. Но чаще удалённая звёзда вращается вокруг пары тесно связанных звёзд, которые представляют собой единое целое. Такая пара называется главной.

Конечно, тремя звёздами кратность не ограничивается. Существуют системы из четырёх, пяти и шести звёзд. Чем кратность больше, тем количество таких систем меньше. Например, звезда ε Лиры представляет собой две пары взаимосвязанные между собой, удалённое друг от друга на большое расстояние. Учёными было приблизительно подсчитано, что расстояние между парами должно в 5 и более раз превышать расстояние между звёздами внутри одной пары.

Лучшим примером шестикратной системы звёзд служит Кастор в созвездии Близнецы. В ней три пары звёзд организованно взаимодействуют между собой. Больше 6 звёзд в системе пока ещё не обнаружено.

“Дьявольские звезды”

Первую «дьявольскую» звезду открыли арабы. Это была Бета Персея, которую они, собственно говоря, назвали просто Дьяволом (Эль-Гуль). Искаженное европейцами, это слово превратилось в Алголь.

А вот и «дьявольская звезда» Алголь. Две звезды находятся так близко друг к другу, что взаимным притяжением буквально «разматывают» друг друга

Звезда поразила арабских астрономов тем, что, будучи обычно около второй звездной величины, она как по расписанию вдруг ослабевала почти до четвертой звездной величины, а потом, спустя время, опять начинала сиять как ни в чем не бывало. Иными словами, Эль-Гуль попирал священные законы – менялся на небесах (считавшихся неизменными), на небесах, где живет Аллах! Чем может быть такая звезда, как не звездой дьявола, если не им самим!

Два дня 11 часов звезда остается постоянной яркости, а затем в течение пяти часов теряет две трети своего блеска, с тем чтобы через пять часов снова к ней вернуться.

Странное и упорное поведение дьявольской звезды было объяснено тем, что тут, собственно, не одна звезда, а две, но одна гораздо ярче другой. Они обращаются друг около друга по орбите так, что по временам менее яркая частично закрывает от нас более яркую, производя периодические “звездные затмения”.

С развитием астрономии было открыто много других двойных звезд этого же типа, названных затменно-двойными или же, по образцу прародителя: алголями.

Изучение кривых изменения их блеска в совокупности со спектральными данными позволяет изучить эти звезды так подробно и точно, как это нельзя сделать ни в каком другом случае. Поэтому дьявольские звезды среди всех звезд для нас наименее загадочны, и дьявольского в них не остается для нас ничего, кроме разве «дьявольски» подробной их изученности.

Рассмотреть все это нам дали возможность радиотелескопы. А вот в плане оптики, к сожалению, мы не далеко ушли от древних арабских астрономов. По этой причине для 99% астрономов-любителей, все алголи по-прежнему остаются самыми обычными одинокими точками на небосклоне. Разглядеть их двойную природу с Земли практически невозможно.

Взаимодействие двойных и кратных звёзд

В силу того, что расстояния между участниками в двойных и иных звёздных сообществах различны, их взаимодействие имеет разный характер.

Если звёзды расположены близко, то возникают явления приливов и перетекания газов от одного компаньона к другому.

ДВОЙНАЯ ЗВЕЗДАДВОЙНАЯ ЗВЕЗДА

Поэтому периоды обращения в этих системах могут укладываться в часы и сутки. Если же расстояния в парах очень велики, то периоды обращений могут достигать тысячелетий, а взаимодействие членов сообщества будет практически незаметно. Также имеет значение взаимодействие двойных звёзд с иными объектами. Ими могут стать, например, молекулярные облака гигантских размеров.

Происхождение и эволюция

Механизм формирования одиночной звезды изучен довольно хорошо — это сжатие молекулярного облака из-за гравитационной неустойчивости. Также удалось установить функцию распределения начальных масс. Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты:

  1. Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
  2. Распределение периода.
  3. Эксцентриситет у двойных звёзд может принимать любое значение 0<e<1, с медианным значением e=0.55. Можно утверждать, что нет какого-либо предпочтительного значения, и орбиты с высоким эксцентриситетом—обычное явление.
  4. Соотношение масс. Распределение соотношения масс q= M1/ M2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2<q<1. Таким образом, двойные звезды стремятся иметь компоненты одинаковой массы гораздо сильнее, чем предсказывает начальная функция масс.

На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется:

  1. Теории с промежуточным ядром
  2. Теории с промежуточным диском
  3. Динамические теории

Теории с промежуточным ядром

Самый многочисленный класс теорий. В них формирование идёт за счёт быстрого или раннего разделения протооблака.

Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчётная функция масс звёзд не совпадает с наблюдаемой.

Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.

Современные же теории рассматриваемого типа считают, что основная причина фрагментации — рост внутренней энергии и энергии вращения по мере сжатия облака.

Теории с промежуточным диском

В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.

В последнее время количество компьютерных расчётов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.

Динамические теории

Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдёт ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.

В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.

Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд.

Открытие двойных звезд

Открытие двойных звезд стало одним из первых достижений, сделанных с помощью астрономического бинокля. Первой системой данного типа была пара Мицар в созвездии Большой Медведицы, которая была открыта Ричолли, астрономом из Италии. Правда, в то время не было сведений о том, есть ли физическая связь между звёздами в такой системе.

Мицар и Алькор двойная звезда

Некоторые учёные придерживались точки зрения о том, что двойные звёзды зависят от общей звёздной ассоциации. Их аргументом был неоднородный блеск составляющих пары. Поэтому складывалось впечатление, что их разделяет значительное расстояние, на котором невозможно установить связь. Для подтверждения или опровержения этой гипотезы потребовалось измерение годичного звёздного параллакса.

В 1804 году Вильям Гершель, который вёл свои наблюдения в течение 24 лет, издал каталог с подробным описанием 700 двойных звёзд. Гершель учёл противоречие гипотезы, попытавшись его разрешить, и к своему удивлению выяснил, что траектория каждой звезды имеет сложную эллиптическую форму, а не вид симметричных колебаний с периодом в полгода, как предполагалось.

Согласно физическим законам небесной механики два связанных гравитацией тела передвигаются по орбите эллиптической формы, именно поэтому результаты исследования Гершеля стали доказательством предположения о том, что в двойных звёздных системах есть гравитационная связь.

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Основная статья: Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П

Паренаго, обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более

Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается.

Обмен массами между звёздами

Основная статья: Полость Роша


Сечение поверхностей равного потенциала в модели Роша в орбитальной плоскости двойной системы

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая

Тогда для компонентов M1 и M2 с суммой больших полуосей a=a1+a2 введем систему координат, синхронную с орбитальным вращением ТДС. Центр отсчета находится в центре звезды M1, ось X направлена от M1 к M2, а ось Z — вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой:

Φ=−GM1r1−GM2r2−12ω2(x−μa)2+y2{\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left},

где r1= x2+y2+z2 , r2= (x-a)2+y2+z2 , μ= M2/(M1+M2), а ω — частота вращения по орбите компонентов. Используя третий закон Кеплера, потенциал Роша можно переписать следующим образом:

Φ=−12ω2a2ΩR{\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}},

где безразмерный потенциал:

ΩR=2(1+q)(r1a)+2(1+q)(r2a)+(x−μa)2+y2a2{\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}},

где q = M2/M1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const. Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L1. Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения.

Симбиотические звёзды

Основная статья: Симбиотические звезды

Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окруженных общей туманностью. Для них характерны сложные спектры, где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п. Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки, во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1—100 лет.

Сириус.

Сириус, как и a Центавра, тоже состоит из двух звезд – А и В, однако в отличие от неё обе звезды имеют спектральный класс A (A-A0, B-A7) и, следовательно, значительно большую температуру (A-10000 K, B- 8000 K). Масса Сириуса А – 2,5Mсолнца
, Сириуса В – 0,96Mсолнца
. Следовательно, поверхности одинаковой площади излучают у этих звезд одинаковое кол-во энергии, но по светимости спутник в 10 000 раз слабее, чем Сириус. Значит, его радиус меньше в 100 раз, т.е. он почти такой же, как Земля. Между тем масса у него почти такая же, как и у Солнца. Следовательно, белый карлик имеет огромную плотность — около 10 59 0 кг/м 53 0. Существование газа такой плотности было объяснено таким образом: обычно предел плотности ставит размер атомов, являющихся системами, состоящими из ядра и электронной оболочки. При очень высокой температуре в недрах звезд и при полной ионизации атомов их ядра и электроны становятся независимыми друг от друга. При колоссальном давление вышележащих слоев это «крошево» из частиц может быть сжато гораздо сильнее, чем нейтральный газ. Теоретически допускается возможность существования при некоторых условиях звезд с плотностью, равной плотности атомных ядер. При исследовании Сириуса, даже зная о существовании спутника, его долго не могли обнаружить из-за того, что его плотность в 75 тысяч раз больше, чем у Сириуса А, а следовательно, размер и светимость ≈ в 10 тысяч раз меньше. Это связано с тем, что атомы Сириуса Bнаходятся в полностью ионизированном состоянии, а свет, как известно, излучается только при переходе электрона с орбиты на орбиту.

· Важнейшие из этих данных следующие. Массы 90% звезд заключены в пределах от 0,4 до 2,0 массы Солнца. Массы звезд не могут быть ни слишком большие (например, больше массы Солнца в 100 раз), ни слишком малые (например, 1/100 солнечной).

· Компоненты двойных звезд чаще бывают представлены звездами одной светимости и одного спектрального класса, но бывают и сильные различия. Есть веские основания считать, что компоненты двойной звезды сформировались одновременно и в дальнейшем эволюционировали параллельно, оставаясь в системе.

· Масса звезды в момент ее формирования является важнейшим параметром, определяющим ее последующую эволюцию.

Данные выводы, сформулированные на основе большого опыта изучений двойных звезд, могут рассматриваться как данные наблюдений и служить материалом для обобщений и развития теорий. Особенно ценны эти данные для создания теорий внутреннего строения звезд и теорий эволюции звезд. В этом и состоит главное значение наблюдений двойных звезд в астрономии.

Литература:

1.http://www.astronet.sai.msu.ru

2.http://www.Galactis.freenet.uz

3.http://www.referat.2000.bizforum.ru

4.Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. – М.: Наука, 1983. — 560с.

5.Гуревин Л.Э., Чернин А.Д. Происхождение Галактик и звезд. – М.: Наука, 1983. — 192с.

6.Гурштейн А.А. Известные тайны неба: книга для учащихся. – М.: Просвещение, 1984. – 272с.

7.Дагаев М.М., Демин В.Г., Климин И.А., Чаругин В.М. Астрономия: учебное пособие для студентов физмата. – М.: Просвещение. 1983. – 384с.

8.Каплан С.А. Физика звезд. М.: Наука. 1977. – 208с.

9.Куто П. Наблюдение визуально-двойных звезд; Пер. с фр. А.М.Черепащука. – М.:Мир, 1981. – 238с.

10.Сурдин В.Г. Рождение звезд: Учебно-научная монография. М.: УРСС. 1997. – 208с.

11.Шакура Н.И., Постнов К.А. Ультратестные двойные звезды // Земля и Вселенная. 1987. — №3. — С. 24-30.

12.Энциклопедия для детей. Астрономия. М.: Аванта 2003. Т.8.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий