Звезды карлики, их типы и отличия

Визуальные белые

Таким образом, классы звезд с B по F с Земли могут выглядеть белыми. И только объекты, относящиеся к А-типу, имеют такую окраску на самом деле. Так, звезда Саиф (созвездие Орион) и Алголь (бета Персея) наблюдателю, не вооруженному телескопом, покажутся белыми. Они относятся к спектральному классу B. Их истинный цвет — бело-голубой. Также белыми кажутся Мифрак и Процион, самые яркие звезды в небесных рисунках Персей и Малый Пес. Однако их истинный цвет ближе к желтому (класс F).

Почему звезды белые для земного наблюдателя? Цвет искажается из-за огромного расстояния, отделяющего нашу планету от подобных объектов, а также объемных облаков пыли и газа, нередко встречающихся в космосе.

Желтые звезды

Центр нашей планетной системы — Солнце
— имеет температуру поверхности, превосходящую 6000 по Кельвину. Из космоса оно и подобные ему светила выглядят ослепительно белыми, хотя с Земли кажутся, скорее, желтыми. Золотые звезды имеют средний возраст.

Из других известных нам светил белой звездой является и Сириус
, хотя на глаз его цвет определить довольно сложно. Это происходит потому, что он занимает низкое положение над горизонтом, и по пути к нам его излучение сильно искажается за счет многократного преломления. В средних широтах Сириус, часто мерцая, способен всего за полсекунды продемонстрировать весь цветовой спектр!

Дизайн и строение корабля[править | править код]

Дизайн и управлениеправить | править код

Корпус «Белой звезды» конструктивно представляет собой интегральный «триплан» и оснащен тремя комплектами «стабилизаторов». Два больших верхних крыла с обратной стреловидностью и два больших нижних крыла обычной стреловидностью несут два гравиметрических двигателя на своих законцовках и один внизу «центроплана», два малых «стабилизатора» расположены за рубкой управления. Плавниковые «стабилизаторы» расположены в корме. «Белая звезды» оснащена курсовым тяжелым ударным вооружением в носу и в крйльях и ворлонскими защитным и сенсорным вооружением а также оснащена усовершенствованной минбарской боевой маскировочной системой. Двигательная подсистема «Белой звезды» представлена усовершенствованными минбарскими гравиметрическими приводами, придающими кораблю огромную тяговооруженность. А вместе более совершенной системой искусственной гравитацией на борту двигательная подсистема обеспечивает крайне высокую скороподъемность и сверхманевренность. Кокпит «Белой звезды» оснащен
голографическими дисплеями. При необходимости, корабль может управляться одним пилотом.

Тактико-технические хорактеристикиправить | править код

Тактико-технически «Белая звезда» представляет собой очень тяжело вооруженный тяжелый крейсерский корвет-истребитель. Т. е. «Белая Звезда» сочетает большую огневую мощь, высокую защищенность, очень большие максимальную скорость и скороподъемность, сверхманевренность («Белая звезда» способна маневрировать подобно маневренному истребителю, а также на очень большой скорости резко менять курс в том числе на обратный), высокую энерговооруженность (в частности способность открывать собственные зоны перехода).

В качестве защитного вооружения на «Белой звезде» используется ворлонская адаптивная органическая броня. Также «Белая звезда» оснащена ворлонским сенсорым вооружением и ворлонской системой контроля. Всё вместе это фактически делает «Белую звезду» живым существом, которое думает и учится, адаптируясь к боевым ситуациям и накапливая собственный опыт. Адаптивная органическая броня крайне устойчива к внешнему воздействию и обладает также функцией регенерации. Также она адаптируется к поражающим факторам оружия противника, что обеспечивает лучшую защиту от того вида оружия, с которым броня и другие системы «Белой звезды» уже «познакомились». В дополнение к этому, на каждой «Белой звезде» установлен ворлонский щит-отражатель энергии, который обеспечивает некое прогибание, отклонение направления взрыва заряда в сторону от корпуса корабля. Эта система пропускает только кинетическое воздействие (например от взрыва), защищая корабль от различных видов энергетического поражения. Фактически, корпуса корабля достигает только крайне малая часть энергии. В результате достаточная для преодоления всего защитного вооружения «Белой звезды» энергетическая мощность, направляемая атакующим «Белую звезду» кораблем, должна быть очень велика, чтобы атакующий «Белую звезду» корабль смог уничтожить «Белую звезду» с минимальным риском попасть под контратаку «Белой звезды». (Как правило стремительная контратака «Белой звезды» на атакующий корабль фатальна для последнего.)

Также «Белая звёзда» оснащены усовершенстованной минбарской маскировочной системой. Устройство сенсорной скрытности создаёт поля разнообразных помех, которые поглощают излучение сенсоров, преломляет и отражает сенсорные лучи в сторону от приёмников, и искажают сигнатуру корабля и таким образом, экранируя корабль от любых видов сенсоров наведения и сканеров почти всех молодых рас. Тем не менее летящая в планетарной атмосфере «Белая Звезда» оставляет за собой аэродинамический вихревой след, по которому может быть отслежена даже радарами.

Характеристики

Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.

Звездная эволюция

За одну ночь звезды не рождаются: любая из них проходит несколько стадий. Сначала облако газа и пыли начинает сжиматься под действием собственных сил тяготения. Медленно оно приобретает форму шара, при этом энергия гравитации превращается в тепло — растет температура объекта. В тот момент, когда она достигает величины в 20 миллионов Кельвинов, начинается реакция ядерного синтеза. Эта стадия и считается началом жизни полноценной звезды.

Большую часть времени светила проводят на главной последовательности. В их недрах постоянно идут реакции водородного цикла. Температура звезд при этом может различаться. Когда в ядре заканчивается весь водород, начинается новая стадия эволюции. Теперь топливом становится гелий. При этом звезда начинает расширяться. Ее светимость увеличивается, а температура поверхности, наоборот, падает. Звезда сходит с главной последовательности и становится красным гигантом.

Масса гелиевого ядра постепенно увеличивается, и оно начинает сжиматься под собственным весом. Стадия красного гиганта заканчивается гораздо быстрее, чем предыдущая. Путь, по которому пойдет дальнейшая эволюция, зависит от изначальной массы объекта. Маломассивные звезды на стадии красного гиганта начинают раздуваться. В результате этого процесса объект сбрасывает оболочки. Образуется планетарная туманность и оголенное ядро звезды. В таком ядре завершились все реакции синтеза. Оно называется гелиевым белым карликом. Более массивные красные гиганты (до определенного предела) эволюционируют в углеродных белых карликов. В их ядрах присутствуют более тяжелые элементы, чем гелий.

Голубые отставшие звезды – звезды голубого цвета

Звезды, находящиеся в звездных скоплениях шарового типа, температура у которых выше температуры обычных звезд, а для спектра характерно существенное смещение к синей области, чем у звезд скопления с аналогичной светимостью, получили название голубые звезды отставшие. Это признак позволяет им выделяться относительно других звезд этого скопления на диаграмме Герцшпрунга-Рассела. Существование таких звезд опровергает все теории эволюции звезд, суть которой заключается в том, что для звезд, которые возникли в один и тот же промежуток времени, предполагается размещение в четко определенной области диаграммы Герцшпрунга-Рассела. При этом единственным фактором, который влияет на точное местоположение звезды, является ее начальная масса. Частое появление голубых отставших звезд вне пределов вышеупомянутой кривой, может стать подтверждением существования такого понятия, как аномальная звездная эволюция.

Специалисты, пытающиеся объяснить природу их возникновения, выдвинули несколько теорий. Наиболее вероятная из них указывает о том, что данные звезды голубого цвета в прошлом были двойными, после чего у них начал происходить или происходит сейчас процесс слияния. Итогом слияния двух звезд становится возникновение новой звезды, имеющей гораздо большую массу, яркость и температуру, чем звезды такого же возраста.

Если верность этой теории удастся каким-то образом доказать, теория звездной эволюции лишилась бы проблем в виде голубых отставших. В составе получившейся звезды имелось бы большее количество водорода, который вел бы себя аналогично молодой звезде. Существуют факты, подтверждающие такую теорию. Наблюдения показали, что чаще всего отставшие звезды встречаются в центральных регионах шаровых скоплений. В результате преобладающего там числа звезд единичного объема, близкие прохождения или же столкновения становятся более вероятными.

Для проверки данной гипотезы необходимо заняться изучением пульсации голубых отставших, т.к. между астросейсмологическими свойствами слившихся звезд и нормально пульсирующих переменных, могут быть некоторые отличия. Стоит отметить, что измерять пульсации достаточно тяжело. На этот процесс также негативно переполненность звездного неба, малые колебания пульсаций голубых отставших, а также редкость их переменных.

Один из примеров слияния можно было наблюдать в августе 2008 года, тогда такое происшествие коснулось объекта V1309, яркость которого после обнаружения возросла несколько десятков тысяч раз, а по прошествии нескольких месяцев вернулась к первоначальному значению. В результате 6-летних наблюдений, ученые пришли к выводу, что данный объект является двумя звездами, период обращения которых друг вокруг друга составляет 1,4 дня. Эти факты натолкнули ученых на мысль, что в августе 2008 года происходил процесс слияния этих двух звезд.

Для голубых отставших характерным является высокий вращательный момент. К примеру, скорость вращения звезды, которая располагается в середине скопления 47 Тукана, в 75 раз превышает скорость вращения Солнца. Согласно гипотезе, их масса в 2-3 раза превышает массу иных звезд, которые располагаются в скоплении. Также при помощи исследований было установлено, что если звезды голубого цвета близко располагаются к каким либо другим звездам, то у последних будет процентное содержание кислорода и углерода ниже, чем у соседей. Предположительно, звезды перетягивают данные вещества с других, движущихся по их орбите звезд, в результате чего возрастает их яркость и температура. У «обворованных» звезд обнаруживаются места, где произошел процесс превращения исходного углерода в другие элементы.

Арктур

Арктур

Самая яркая звезда северного полушария и созвездия Волопаса. На всем звездном небе Арктур занимает 4 место по яркости свечения. Он примерно в 110 раз ярче Солнца в оптическом диапазоне и в 180 раз с учетом инфракрасной части спектра. Относится к классу красных гигантов. 

По данным космического телескопа Европейского космического агентства, Арктур удален от нашей планеты на расстояние 36,7 световых лет. Определить точную массу ученым до сих пор не удалось, однако есть теория что масса Арктура приближена к солнечной.

Арктур очень яркая звезда, поэтому найти его не составит труда зная расположение созвездия Волопаса. На него указывает «хвост» Большой Медведицы. Находясь на европейских широтах (в том числе в Украине) можно наблюдать как Арктур восходит на северо-востоке, проходит через южную часть неба и заходит на северо-западе. Звезду можно наблюдать практически по всему земному шару, двигаясь от 71° южной широты к северу. Оптимальное время для наблюдений начинается весной и длится до середины лета. 

Интересный факт – Арктур оказался первой звездой, которую удалось увидеть в телескоп днем, случилось это в далеком 1635 году.

Звезды созвездия Телец

В созвездии Тельца множество самых разных звезд, но особого внимания заслуживают несколько.

Альдебаран

Конечно, наиболее примечательная звезда этого созвездия – его альфа. Эта звезда имеет имя – Альдебаран. Её блеск составляет 0.87m, и это 13 место в списке ярких звезд. Это оранжевый гигант, который дожигает свой гелий и расширяется – сейчас его диаметр больше солнечного в 38 раз, хотя масса примерно такая же. Альдебаран излучает света в 150 раз больше, чем Солнце. Расстояние до него – 65 световых лет, так что эту звезду можно считать почти соседом.

Как и многие гиганты, Альдебаран – неправильная переменная, то есть меняет свой блеск непредсказуемым образом в диапазоне 0.2m. Кроме того, это еще и двойная звезда — на расстоянии в несколько сотен астрономических единиц от гиганта имеется его спутник – тусклый красный карлик.

Альдебаран, как кажется, находится в звездном скоплении Гиад. На самом деле он к этому скоплению никакого отношения не имеет, потому что расположен гораздо ближе к нам, и просто Гиады находятся в том же направлении, только намного дальше.

Альдебаран (яркая оранжевая звезда) на фоне скопления Гиады.

Телец – зодиакальное созвездие, а значит, через него проходит Солнце и Луна. Любопытный факт – Альдебаран является самой яркой звездой, какую только может покрыть Луна на своем пути.

А еще есть предположение, что у Альдебарана есть планета, которая в 11 раз больше Юпитера.

Нат

Это β Тельца, звезда 1.65 звездной величины, расположенная на границе с созвездием Возничего. Было время, когда Нат принадлежал сразу к двум созвездиям, как ни странно. Другое популярное название — Эль-Нат.

Эта звезда находится от нас на расстоянии в 131 световой год, то есть вдвое дальше Альдебарана, и удаляется от нас на 9 км каждую секунду. Нат больше Солнца в 5-6 раз, имеет светимость 700, и тяжелее в 4.5 раз, так что вещества в звезде гораздо больше, чем в Альдебаране. Если учесть, что Нат увеличивается, и уже сейчас считается голубым гигантом, он будет гораздо больше и ярче альфы.

Кроме того, Нат – двойная звезда.

Необычные звезды созвездия Телец

В созвездии Тельца есть много интересных звезд, но две заслуживают особого внимания. Это Эта Тельца — Альциона, и дзета Тельца (собственного имени у нее нет).

Альциона – яркая звезда в скоплении Плеяды, о котором мы еще поговорим. Необычность её в том, что на самом деле это кратная звезда. В центре системы находится компонент A — бело-голубой гигант Be-типа, то есть из-за быстрого вращения (в 100 раз быстрее Солнца) он имеет эллипсоидную форму. Из-за этого гигант просто истекает веществом с экватора, которое образует околозвездный диск.

Компоненты B и C – обычные звезды главной последовательности, 6 и 8 звездной величины, если не считать того факта, что компонент C является переменной звездой типа δ Щита. Компонент D представляет собой бело-желтый карлик. И все четыре компонента Альционы можно увидеть в небольшой телескоп.

Дзета Тельца находится от нас на расстоянии в 417 световых лет, и при этом имеет 2.97 звездную величину. Эта звезда двойная и примечательна тем, что её главный компонент излучает света в 5700 раз больше, чем Солнце! Это просто какой-то суперсветильник.

Также заслуживает внимания знаменитая переменная T Тельца, которая служит прототипом целого класса переменных звезд. Это молодая звезда, которая только формируется из околозвездного диска – вещество из него падает на протозвезду в центре, сжимается, и становится частью звезды. Масса этой протозвезды в 1000 раз больше солнечной. Эта звезда – тройная, и около нее находится туманность NGC 1555 (Переменная туманность Хайнда), которая освещается этой звездой. Блеск T Тельца меняется неправильным образом от 9.3 до 14m, и так же меняется освещенность туманности. Возраст этой звезды всего несколько миллионов лет, что очень мало, и сейчас мы видим её на ранней стадии эволюции. Также у нее обнаружена экзопланета, в 1.66 раз тяжелее Юпитера, расположенная на расстоянии всего 0.1 а.е от звезды.

Различия звезд по цвету

Существует огромное разнообразие звезд с непередаваемыми цветовыми оттенками. В результате этого даже одно созвездие получило название «Шкатулка с драгоценностями», основу которого составляют голубые и сапфировые звезды, а в самом его центре расположилась ярко светящая оранжевая звезда. Если рассматривать Солнце, то оно имеет бледно-желтый цвет.

Прямым фактором, влияющим на различие звезд по цвету, является температура их поверхности. Объясняется это просто. Свет по своей природе является излучением в виде волн. Длина волны – это расстояние между ее гребнями, является очень маленькой. Чтобы ее себе представить, нужно 1см разделить на 100 тыс. одинаковых частей. Несколько вот таких частичек и будут составлять длину волны света.

Учитывая, что это число получается достаточно маленьким, каждое, даже самое незначительное, его изменение станет причиной, по которой картинка, наблюдаемая нами, поменяется. Ведь наше зрение разную длину световых волн воспринимает в качестве разных цветов. К примеру, синий цвет имеют волны, длина которых в 1,5 раза меньше, чем у красных.

Также практически каждый из нас знает, что температура может оказывать самое прямое влияние на цвет тел. Для примера можно взять любой металлический предмет и положить его на огонь. Во время нагревания он станет красным. Если бы температура огня существенно повышалась, менялся бы и цвет предмета – с красного на оранжевый, с оранжевого на желтый, с желтого на белый, и, наконец, с белого на сине-белый.

Поскольку Солнце имеет температуру поверхности в районе 5,5 тыс. С, то оно является характерным примером желтых звезд. А вот наиболее горячие голубые звезды могут разогревать и до 33 тыс. градусов.

Цвет и температура были связаны учеными при помощи физических законов. Чем температура тела прямо пропорциональна его излучению и обратно пропорциональна длине волн. Волны синего цвета имеют более короткие длины волн в сравнение с красным. Раскаленные газы излучают фотоны, энергия которых прямо пропорциональна температуре и обратно пропорциональна длине волны. Именно поэтому для наиболее горячих звезд характерным является сине-голубой диапазон излучения.

Поскольку ядерное топливо на звездах не безгранично, оно имеет свойство расходоваться, что приводит к остыванию звезд. Поэтому звезды среднего возраста имеют желтый цвет, а старые звезды мы видим красными.

В результате того что Солнце находится очень близко к нашей планете, можно с точностью описать его цвет. А вот для звезд, которые находятся в миллионе световых лет от нас, задача усложняется. Именно для этого используется прибор, получивший название спектрограф. Сквозь него ученые пропускаю свет, излучаемый звездами, в результате чего можно можно спектрально проанализировать практически любую звезду.

Кроме того, при помощи цвета звезды, можно определить ее возраст, т.к. математические формулы позволяют использовать спектральный анализ для определения температуры звезды, по которой легко вычислить ее возраст.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Ахернар

Ахернар

Занимает девятое и десятое место в нашем рейтинге самых ярких звезд на небе. Некая неопределенность происходит потому что Бетельгейзе (следующая звезда в рейтинге) светит с переменной яркостью. В моменты максимальной яркости Бетельгейзе, Ахернар занимает десятую позицию.

Ахернар очень быстро вращается вокруг собственной оси (260-310 км/с), из-за этого звезда сильно сплюснута с полюсов. Экваториальный диаметр этого небесного тела  более чем на 50% больше полярного диаметра. Масса звезды приблизительно в 8 раз больше солнечной. Показатель светимости Ахернара более чем в 3000 раз больше чем у Солнца. Расстояние от нашей системы до этой звезды примерно 139 световых лет.

Увидеть Ахернар можно находясь на южном полушарии, с широт южнее 32°46′ с. ш. Находясь севернее этой широты увидеть звезду не получится, так как она будет ниже линии  горизонта. К сожалению находясь в Украине или в Европе в целом, увидеть эту Ахернар не представляется возможным. Чтобы ее наблюдать, необходимо находиться южнее Средиземного моря. Однако, через 7-9 тыс. лет, из-за явления прецессии, Ахернар можно будет наблюдать с территории современной Украины.

Альфа Центавра

Альфа Центавра

Альфа Центавра является тройной звездной системой в созвездии Центавра (Кентавра) и третьей по яркости на ночном небе. Звезда, которую мы наблюдаем и привыкли называть Альфа Центавра, на самом деле состоит из двух звезд – «Альфа Центавра А» и «Альфа Центавра В», просто в силу большого расстояния (с точки зрения земного расстояние большое, а с точки зрения космического всего 4,36 светового года) свет двух звезд сливается воедино и мы видим обе звезды как одну яркую. Третья звезда этой звездной системы находится к нам ближе всего (ближайшая к Солнцу звезда) – Проксима Центавра или Альфа Центавра С, однако увидеть ее невооруженным глазом нельзя, она относится к классу красный карлик.

Обе главные звезды близки по характеристикам к нашему Солнцу, движутся они по эллиптической траектории вокруг общего центра масс.

Мы не можем без телескопа различить две звезды так как они находятся слишком близко друг к другу. 

К сожалению, наблюдать Альфа Центавру с территории современной Украины нельзя, так как она находится южнее, под линией горизонта. Наблюдать звезду уже у линии горизонта можно начиная от +29°10′ северной широты, южнее Дели, Кувейта. В южном полушарии, при помощи Альфа Центавра определяется положение созвездия Южный Крест, который служит навигационным ориентиром в пространстве.

В конце жизни звёзды превращаются в белые карлики, нейтронные звёзды или чёрные дыры.

Category:Коротко и ясно о самом интересном

4-1. Жизненный цикл звезды в зависимости от её массы (по blackholecam.org).
  4-2. Туманность Улитка (ближайшая к нам планетарная туманность, 700 световых лет) в созвездии Водолея – красивейший «памятник» звезде типа нашего Солнца, погибшей десять тысяч лет назад (ESO).
  4-3. Туманность Кошачий глаз (3000 световых лет от нас) в созвездии Дракона – ещё один вид завершающего этапа эволюции звезды, похожей на наше Солнце, после того, как у неё закончится термоядерное топливо (NASA, ESA, and The Hubble Heritage Team – STScI / AURA).
  4-4. Туманность Эскимос (3 тысячи световых лет от нас) в созвездии Близнецов. 10 тысяч лет назад на месте этой туманности была звезда, похожая на наше Солнце. Как и большинство фотографий космических объектов, это изображение сделано совмещением данных, полученных оптическими, инфракрасными и рентгеновскими телескопами в искусственных цветах. Но каждая деталь этих завораживающих видов, хоть и не будет видна глазом даже с близкого расстояния, существует на самом деле (Andrew Fruchter – STScI et al., WFPC2, HST, NASA).
  4-5. Туманность Гомункул (8 тысяч световых лет от нас) появилась на небе в результате выброса вещества из звезды-сверхгиганта Эта Киля – самой большой из известных науке звёзд (120 масс Солнца и 240 его диаметров). В центре изображения видно фиолетовое свечение — отражение света Эты Киля. В течение нескольких миллионов лет она может взорваться как яркая сверхновая (N. Smith, J. A. Morse – U. Colorado et al., NASA).

Итак, жизнь звезды имеет начало и конец. И в конце её жизни, после того, как иссякнет источник энергии, от звезды остаётся какой-то очень небольшой по размеру остаток: белый карлик, нейтронная звезда или чёрная дыра.

Белый карлик получается из звезды типа нашего Солнца, причём без всякого взрыва. Это объект размером с Землю и массой, как у Солнца. Его плотность настолько высока, что электронные оболочки атомов разрушаются, и вещество становится электронно-ядерной плазмой. Один из первых известных белых карликов открыли, изучая самую яркую звезду ночного неба – Сириус. Оказалось, что его спутник белый, маленький и очень тяжёлый.

Если масса звезды больше солнечной в несколько раз, мощная гравитация превратит электроны и протоны в нейтроны, и сжатие пойдёт ещё дальше. При этом образуется нейтронная звезда – очень интересный объект со сверхвысокой температурой и плотностью, сверхмощными магнитными и гравитационными полями. Только представьте себе звезду с массой Солнца и радиусом всего 10 км, которая делает оборот вокруг своей оси за одну тысячную секунды!

Самые массивные звёзды превращаются в чёрные дыры. Гравитационное притяжение чёрной дыры настолько велико, что покинуть её не могут даже фотоны. У нас пока нет точной теории, полностью описывающей внутреннее строение чёрных дыр.

Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!

Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности в единицу времени, определяется из закона Стефана — Больцмана.

Деление звезд на основании сопоставления светимости звезд сих температурой и цветом и абсолютной звездной величиной (диаграмма Герцшпрунга-Рессела):

  1. главная последовательность (в центре ее находится Солнце — желтый карлик)
  2. сверхгиганты (велики по размерам и большая светимость: Антарес, Бетельгейзе)
  3. последовательность красных гигантов
  4. карлики (белые — Сириус)
  5. субкарлики
  6. бело-голубая последовательность

Это разделение также и по возрасту звезды.

Различают следующие звезды:

  1. обычные (Солнце);
  2. двойные (Мицар, Албкор) делятся на:
  • а) визуально-двойные, если их двойственность замечена при наблюдении в телескоп;
  • б) кратные — это система звезд с числом больше чем 2, но меньше чем 10;
  • в) оптически-двойные — это такие звезды, что их близость является результатом случайной проекции на небо, а в пространстве они далеки;
  • г) физически-двойные — это звезды, которые образуют единую систему и обращаются под действием сил взаимного притяжения вокруг общего центра масс;
  • д) спектрально-двойные — это звезды, которые при взаимном обращении подходят близко друг к другу и их двойственность можно определить но спектру;
  • е) затменно-двойные — это звезды» которые при взаимном обращении загораживают друг друга;

переменные (б Цефея). Цефеиды — переменные по яркости звезды. Амплитуда изменения яркости составляет не более 1,5 звездной величины. Это пульсирующие звезды, т. е. они периодически расширяются и сжимаются. Сжатие наружных слоев вызывает их нагрев;
нестационарные.

Новые звезды
— это звезды, которые существовали давно, но внезапно вспыхнули. Их яркость увеличилась за короткое время в 10 000 раз (амплитуда изменения яркости от 7 до 14 звездных величин).

Сверхновые звезды
— это звезды, которые были незаметны на небе, но неожиданно вспыхнули и увеличили яркость в 1000 раз относительно обычных новых звезд.

Пульсар
— нейтронная звезда, возникающая при взрыве сверхновой.

Данные об общем числе пульсаров и времени их жизни свидетельствуют, что в среднем в столетие рождаются 2-3 пульсара, это приблизительно совпадает с частотой вспышек сверхновых в Галактике.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Желтые звезды – звезды желтого цвета

Желтыми карликами принято называть небольшие звезды главной последовательности, масса которых находится в пределах массы Солнца (0,8-1,4). Если судить по названию, то такие звезды имеют свечение желтого цвета, которое выделяется во время осуществления термоядерного процесса синтеза из водорода гелия.

Поверхность таких звезд разогревается до температуры в 5-6 тыс. Кельвинов, а их спектральные классы находятся в пределах между G0V и G9V. Живет желтый карлик примерно 10 млрд. лет. Сгорание водорода в звезде становится причиной ее многократного увеличения в размерах и превращения в красного гиганта. Одним из примеров красного гиганта является Альдебаран. Такие звезды могут образовывать планетарные туманности, избавляясь от внешних слоев газа. При этом осуществляется превращение ядра в белого карлика, который обладает большой плотностью.

Если брать в расчет диаграмму Герцшпрунга-Рассела, то на ней желтые звезды находятся в центральной части главной последовательности. Поскольку Солнце можно назвать типичным желтым карликом, его модель вполне годится для рассмотрения общей модели желтых карликов. Но есть и другие характерные желтые звезды на небе, названия которых  – Альхита, Дабих, Толиман, Хара и т.п. данные звезды не обладают высокой яркостью. К примеру, тот же Толиман, который, если не учитывать Проксима Центавру, ближе всех располагается к Солнцу, имеет 0-ю величину, но в то же время его яркость наивысшая среди всех желтых карликов. Располагается данная звезда в созвездии Центавра, также она является звеном сложной системы, в состав которой входят 6 звезд. Спектральный класс Толимана – G. А вот Дабих, находящийся в 350 световых годах от нас, относится к спектральному классу F. Но ее высокая яркость обусловлена наличием рядом звезды, относящейся к спектральному классу – А0.

Кроме Толимана, спектральный класс G имеет HD82943, которая расположилась на главной последовательности. Данная звезда, благодаря схожему с Солнцем химическому составу и температуре, также имеет две планеты больших размеров. Однако форма орбит данных планет далеко не круговая, поэтому относительно часто происходят их сближения с HD82943. В настоящее время астрономы смогли доказать, что раньше данная звезда имела гораздо большее число планет, но со временем она их все поглотила.

Красные звезды

Темный красноватый оттенок имеют звезды с низкой температурой
, например, красные карлики, масса которых составляет менее 7,5% от веса Солнца. Их температура ниже 3500 по Кельвину, и хотя их свечение представляет собой богатый перелив множества цветов и оттенков, мы видим его красным.

Гигантские светила, чье водородное топливо закончилось, также выглядят красными или даже коричневыми. В целом, в этом диапазоне спектра находится излучение старых и остывающих звезд.

Отчетливый красный оттенок имеет вторая из главных звезд созвездия Ориона, Бетельгейзе
, а чуть правее и выше ее располагается на карте неба Альдебаран
, имеющий оранжевый цвет.

Старейшая красная звезда из ныне существующих — HE 1523-0901
из созвездия Весов — гигантское светило второго поколения, найденное на окраинах нашей галактики на удалении в 7500 световых лет от Солнца. Ее возможный возраст составляет около 13,2 миллиарда лет, что не намного меньше предполагаемого возраста Вселенной.

Если внимательно присмотреться к ночному небу, легко заметить, что звезды, глядящие на нас, различаются по цвету. Голубоватые, белые, красные, они светят ровно или мерцают, подобно елочной гирлянде. В телескоп различия в цвете становятся более очевидными. Причина, приведшая к такому разнообразию, кроется в температуре фотосферы. И, вопреки логичному предположению, самыми горячими являются не красные, а голубые, бело-голубые и белые звезды. Но обо всем по порядку.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий